
P U B L I S H E D

October 23, 2023 (1st edition)

Brandon Wick - Aarna Networks

Herve Muyal - Cisco Systems

R. Prakash - eOTF

Tomoya Fujita - Sony

Steven Wong - VMWare

R e v i e w e r s

Frank Brockners - Cisco Systems

Joel Roberts - Cisco Systems

Kate Goldenring - Fermyon

Andy Anderson - KubeStellar / IBM Research

A u t h o r s

E d g e N a t i v e
A p p l i c a t i o n
D e s i g n
B e h a v i o r s
W h i t e p a p e r

IoT Edge Working Group

Building on the , developed by the CNCF IoT

Edge Working Group (originally published January 17, 2023), this supplemental paper includes

principles that can be translated into practice by recommending design behaviors for developing

applications for Edge environments.

Cloud native application design best practices have been well established, with a notable

example being the “ ”. Edge native application design builds

on cloud native application design. However, several qualities of the Edge and the Cloud differ.

Consequently, Edge native application design includes several cloud native design principles

while also expanding them to meet the unique requirements of the Edge.

Edge Native Application Principles Whitepaper

Twelve-Factor App methodology

OBJECTIVE

contents

 EDGE NATIVE APPLICATION DESIGN

a) Edge Native and Cloud Native Application Design Domains

b) Edge Native Application Deployment Context

 Edge Native Constraints

 Edge Native Application Design Behaviors

 Concurrency / Scale

 Edge Autonomy via Dependency and Policy Management

 Disposability

 Capability-Sensitive

 Data Persistence

 Metrics / Logs

 Operations (of Edges and Nodes)

 Edge Native Application Sample Scenario

a) Conclusion and Next Steps

b) How to Get Involved

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 2

P3

p5

p8

https://www.cncf.io/wp-content/uploads/2023/03/CNCF_WhitepaperReport_23.pdf
https://12factor.net/

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 3

Edge Native
Application Design 1
Edge Native and Cloud Native Application Design Domains

The diagram below gives an overview of deployments where “Edge Native” design behaviors apply.

Autonomous, self-contained operation

Locations-aware, heterogenous

Non-IT users and operators

Resource constrained

Constrained connectivity

Capability-aware

Edges are autonomous entities

Edge Native Cloud Native

Edge are an extension of the cloud

Centrally controlled

Homogenous

DevOps cloud operating model

Resource rich

Always-on, full-duplex, reliable connectivity

Nodes, Processes should be “cattle”

Cloud = large sets of computers

Scale by process

Location unaware

Nodes, Processes should be “cattle”

Edges = small sets of generic computers

Scale by process and Edge

Location determines policy, security

The picture below shows a reference application deployment that can be applied to many Edge native application scenarios.

The application has a set of distributed Edge components and a logically centralized entity (often deployed in the cloud)

where the distributed Edge components complement the logically centralized entity. The Edge components deal with

functions that must reside at the Edge, such as bandwidth consumption reduction and adherence to location-based policies.

The focus of the Edge components is often on ingesting data, local transformation of data, buffering of data, and displaying

data. The Edge native design behaviors this paper outlines are targeted at these types of deployments.

Edge Native Application Deployment Context

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 4

The picture below shows a typical Edge native deployment context. Distributed Edges (with only one Edge depicted) are

connected over a wide area network connection to a logically centralized entity. The Edges are interfacing with local devices

to ingest data (e.g., from sensors) and to display data (e.g., screens). Overall configuration/intent is inserted into the system

via the logically centralized entity. Metrics and logs are retrieved from the logically centralized entity. The picture also

describes typical qualities of the Edges and the logically centralized entity which are further discussed below as part of the

application design behaviors.

The logically centralized entity can be deployed in many different ways – across different tiers and different

organizational entities. This can be seen as a continuum of the Edge, as depicted in the Linux Foundation (LF) Edge

Whitepaper “ ”.Sharpening the Edge: Overview of the LF Edge Taxonomy and Framework

Entities to consider, as referenced within the LF Edge continuum:

 Centralized Data Center (CDC / hub / parent

 Service Provider Edge (ESP / intermediary / parent or child

 User Edge (UE / spoke / child / peer)

Generally, outside of centralized data centers, Edge native principles and behaviors are applied. In other words,

constrained environments are possible across the User Edge to Service Provider Edge continuum. Overall the properties

of the resources and their associated policies create the relationship to classify something as ‘Edge native’ more so than

the type of Edge (like Constrained Device Edge, Smart Device Edge, etc.) or the locality of an Edge deployment (like

sovereign, single location stand-alone deployment, regional deployment, or multi-regional deployment).

The bulleted list below defines the categories of design constraints that typically need to be considered when

designing an Edge native application.

 Connectivity constraints (i.e, data in transit or network constraints) include limited bandwidth, intermittent connectivity ("air gapped mode"), and

delay and jitter between the Edge and the Cloud or other Edges. In addition, connectivity constraints can include any policy/security related rules or

transformations that apply to any data in transit. For example, certain use cases require that data be anonymized and personally identifiable

information (PII) be removed before it is transferred to another location. Connectivity constraints can also include limitations imposed by middle-

boxes performing network address translation or packet filtering

 Data at rest constraints include security or policy requirements and the associated rules that require certain data transformations and/or storage to

occur at a specific location, like in a region or country

 Resource constraints include limitations due to the resources available at an Edge, such as power, memory, space, and compute capacity.

The different types of constraints can generally apply to the different design behaviors detailed in the following section,

but the applicability can vary by deployment.

Edge Native Constraints

https://www.lfedge.org/wp-content/uploads/2020/07/LFedge_Whitepaper.pdf

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 5

Edge Native Application
Design Behaviors 2
“Edge native” application design means evolving and complementing the Cloud native application design methodology,

such that applications can deal with the constraints of the Edge. This paper considers the as a

reference methodology for cloud native application design. The basic principles of Cloud native application design, such

as the separation of data and code, the notion of processes as stateless, share-nothing entities, and the separation of

build and run stages, are applicable to the Edge as well. The design behaviors listed below are those that are evolved,

reconsidered, or even new when designing an Edge native application. This list should serve as a reference for

developers building Edge native applications.

12-factor methodology

Concurrency / Scale

As defined by the CNCF IoT Edge WG “ ”, Edge native applications

are “spanning”. They can scale geographically to span multiple Edges or scale by processes within an Edge to span

multiple failure domain boundaries.

Edge Native Application Principles Whitepaper

 Scale across locations or Edges: Apps are deployed to “Edges,” with each “Edge” being one or more compute nodes. An

“Edge” represents a physical or logical grouping of compute nodes that run one or more applications and are composed of

small multi-purpose compute nodes. There can be many Edges. Instances of the same App can be deployed to many Edges

simultaneously.

 Scale within a location or Edge: Apps are designed so that they can benefit from running on several nodes in parallel (12-

factor methodology calls this “scale by the process model”). Resources needed within an Edge are met by leveraging a

group of small, low-cost devices, rather than a single large compute unit. Grouping/clustering multiple devices also allows

leveraging of high-availability mechanisms for the Edge-local control plane (e.g., Kubernetes control plane high-availability

mechanisms could be used if a Kubernetes cluster is used at the Edge). Multi-architecture (x86, ARM) ensures that different

use cases can be met. Entire Edges can fail (as in all the devices at a location) – and would be re-bootstrapped using state

that might be retrieved from a central hub (cloud hosted) when recovering from a failure.

Edge Autonomy via Dependency and Policy Management

Declare all dependencies explicitly to allow Apps to operate even if connectivity to the cloud is lost.

 Explicitly declare and isolate dependencies and policies – Edge-local and cloud

 Edges pull information from the peers or parents and post results accordingly.

 Edges operate autonomously – the declared state or intent for an Edge and the applications running on an Edge are declared on a parent

or peer and retrieved accordingly

 Edges decide autonomously about the role a node fulfills, the assignment or scheduling of jobs to nodes, etc

 Edges continue to operate when disconnected from the parent or peer (within a location and across locations where and when possible)

 Edges can reach and access an entity to retrieve declared state or intent from time-to-time. This entity is typically hosted by a parent but

could also be from a peer. No assumptions are being made whether connections from outside of the Edge towards the Edge (e.g., Cloud to

Edge) can be established. For example, no parent initiated contact with an Edge or a persistent tunnel, or an “always connected mode” is

assumed. This ensures the Edge is pulling configuration from the parent or peer. Pushing to the parent or peer is an option, but more

difficult to secure and manage

 Any backing service for applications and services running at the Edge are treated as an attached, potentially remote, resource.

https://12factor.net/
https://www.cncf.io/wp-content/uploads/2023/03/CNCF_WhitepaperReport_23.pdf

Data Persistence

It is recommended that any data that needs to persist should be stored in a dedicated, stateful backing service.

Wherever and whenever possible, Edges should be stateless and buffer / cache data only. The more stateless

an Edge application, the more it can fulfill the Edge native application principle of being portable and reusable.

 Depending on the properties of the data that require storage (retention, sensitivity, size, etc.), an Edge native application

may persist data locally on the Edge location. For data that is actionable, it may be necessary to surface the data to the

parent or peer and may be removed from the Edge location

 Data / state (configuration, customer data, etc.) is typically persisted in the parent or peer in a dedicated, stateful backing

service. Edges may cache or buffer data for local processing needs and in the case of disconnected operation. Large

amounts of data are typically not persisted at the Edge long-term (i.e., preferably store data and configuration in the parent

or peer)

 Data originating at an Edge is typically posted to the control plane at regular intervals to allow the control plane to infer

when the Edge is offline and not expect data from the Edge in a sequence or time-series.

 An acceptable level of time synchronization should occur at the Edge to stamp the data accurately for fitment in a time-

series upstream.

(continued on next page)

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 6

Disposability

Design with failures in mind: Nodes, Edges, and Apps are allowed to fail at any point in time.

 Robustness by Edge: Edges should be fast to start up and should gracefully shut down

 Edges retrieve their declared state (which likely includes startup and runtime configuration) from a parent or peer. This

parent or peer hosts the declared state or intent and can be cloud-hosted, including tiered deployment models that include

intermediaries or Edge services providers on behalf of the central entity

 If an Edge should fail, assurance should be made that the Edge is not ‘bricked’ or otherwise irretrievable, unless it contains

sensitive data and is intentionally ‘bricked’ in a self-protective mode / posture.

Capability-Sensitive

Edge native applications should provision a means for Edges to be aware of their environment or

deployment context.

Capability sensitivity, which means an application’s awareness of its environment or deployment context, i.e.,

the available (hardware-)resources and associated or attached devices, is another principle of Edge native

applications. The discusses those as part of the categories

“hardware awareness” and “interaction with external resources”. Capability sensitivity isn’t typical for  

cloud-applications and as such is also missing from the 12-factor principles.

As explained in the , Edge applications are often aware of

their capabilities in the form of hardware, external devices, and network availability. More specifically, they

should be dynamically ‘knowledgeable’ of their internally and, if possible, externally available network

bandwidth, compute power, compute type (CPU, GPU, etc.), sensors, cameras, actuators, users, and more.

Without this ‘knowledge’ it is not possible to create common configurations that can be applied at scale while

allowing customization during install or runtime by using local environment values as configuration input.

Edge Native Application Principles white paper

Edge Native Application Principles Whitepaper

https://www.cncf.io/wp-content/uploads/2023/03/CNCF_WhitepaperReport_23.pdf
https://www.cncf.io/wp-content/uploads/2023/03/CNCF_WhitepaperReport_23.pdf

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 7

 Data should be stored during times of disconnection of the Edge and be forwarded upon reconnection

 Provisions should be added to protect the central entity (i.e., control plane) that keeps the declared state or intent for all Edges and that

could also serve as a consolidation point for data posted by the Edges. The protection includes provisions, so that a large set of formerly

disconnected Edges all trying to contact the cloud at the same time does not create a DoS attack on the control plane

 When an Edge is in disconnected mode, it should limit storing aging data to be considerate of local storage availability. Allowing data to

age and be discarded, filtered, or summarized to preserve limited storage is preferable.

Metrics / Logs

Like cloud native applications, Edge native applications should be as centrally observable as possible.

Treat logs and metrics as on-demand streams, use metrics whenever feasible

 Stream or push metrics and logs to a parent when possible; logs are only made available on-demand (to save bandwidth between

Edges and the parent)

 Focus on “actionable” metrics: it is preferable to send “information”, not “data”

 Log data at an Edge is typically posted to the control plane at regular intervals to allow the control plane to infer when the Edge is

offline and not expect data from the Edge in a sequence or time-series

 Log data should be stored during times of disconnection and forwarded upon reconnection. The considerations to protect a central 

log / metrics server mentioned above for “storage” apply here

 When an Edge is in disconnected mode it should limit the storage of aging log data to be considerate of the constrained storage

available. Allowing log data to age and be discarded, filtered, or summarized to preserve limited storage, is preferable. This is very

much related to the “actionable metrics” instead of sending “information” points from above also.

Operations (of Edges and Nodes)

Assume a non-expert operator for Apps. Metrics / logs exposed by an App should be actionable.

 Assume a non-expert operator. An IT skill set should not be assumed for on-site personnel at an Edge location.

 Edges and nodes are disposable and should tolerate starting or stopping at a moment’s notice

 Neither Edges, nodes, nor the processes that they run, are “debugged” in case they do not function properly: “Factory

reset – re-bootstrap” to resolve issues at an Edge

 Applications are typically compatible with Zero-Touch provisioning guidelines to avoid misconfiguration

 Green-booting (aka rolling back) to last-known-good-state can also help resolve issues and allow operations to resume

while logs are used to determine why an update or upgrade failed

 Configuratio

 Configuration state for applications and Edges is typically persisted in a logically centralized entity (typically a parent;

tiered or distributed deployments, apply for this logically centralized entity such as intermediaries or Edge service

providers

 Startup configuration or parameterization for Apps should be generic for all Edges. Runtime configuration on a per Edge

basis is retrieved by the App at runtime from the logically centralized entity.

 Whenever and wherever possible, attempt to develop applications so that they require a limited amount of configuration

data and can run well with default values wherever they are deployed. This allows for simple, cookie-cutter style

deployments across many Edges.

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 8

Edge Native Application
Sample Scenario 3
Reliable video capture and transformation (VCAT) is a common component of many Edge use cases, such as

surveillance for security or compliance purposes, or customer behavior and footfall analytics. These use cases can

be found in many verticals, such as retail, quick service restaurants, transportation, logistics, etc. One or more cameras

capture video that needs to be stored for later reference or processed to extract information from the video. The

connection between the location of the cameras and the cloud is limited so that the camera streams cannot be sent to

the cloud for processing or storage. The connection may not have the necessary bandwidth, it may be too expensive, or

it may be subject to outages, making upload to the cloud unreliable. Uploading to the cloud may also not be feasible

because of security or policy reasons. For example, say images sent to the cloud cannot contain Personally Identifiable

Information (PII). In addition to the video-related constraints, the Edge sites may face additional connectivity constraints

due to the network architecture and the associated network security.

Example Solution

An example solution for reliable video capture and transformation (VCAT) would offer the following capabilities

 Receive and sample video streams from multiple cameras

 Process the received frames. Processing can include multiple transformations, such as

 Sampling the incoming frames at a specific, user-defined frame rate

 Resizing the images to a user-defined size

 Detecting and marking objects in the images

 Removing PII from the images (e.g., blurring faces)

 Buffer / cache the images locally in the Edge and upload the results of processing them either immediately, upon connection from the Edge to

the cloud, or at user-configured times

 Persist images in the cloud (in long-term storage)

 Further process the images uploaded to the Cloud by an application. This can be any type of application that implements a specific use-case,

such as surveillance, analytics, etc.

The following figure outlines the architecture of a sample solution, including the functions that reside at the Edge and

the functions that reside in the Cloud.

WHITEPAPER | EDGE NATIVE APPLICATION DESIGN BEHAVIOURS 9

The figure shows a scenario of a VCAT application implementation where an application wants to process the video

streams from three cameras. The edge part of the application can include a component that automatically discovers the

cameras and their capabilities (see the Capability/Environment Discovery box surrounded by a dotted line). The edge

application includes an RTSP Image Grabber component that receives the video stream and converts the stream into a

sequence of images. An "Image Processor" component further processes the images (for example, it could redact the

images and remove PII). After processing, the images are passed to a local caching service. The Results Uploader

component retrieves the images from the local storage service and sends the images to the application's logically

centralized entity. The local storage service decouples data ingestion from data upload. If the Edge is not connected to

the logically centralized entity, images are buffered by the local storage service. The logically centralized entity receives

images from the Edges and stores them in a persistent storage service. Additional uses of the images, as well as the

configuration of the overall setup, are abstracted into generic components, shown as "Configuration" and "Application".

How does Edge native application design behavior apply?

Edge native application design behavior applies to the VCAT-Edge and VCAT-Cloud portions of the VCAT

application as follows

 Concurrency / Scale: The Edge portion of the VCAT solution (VCAT-Edge) is deployed on a set of compute nodes located at each Edge site.

Each Edge site is deployed with the same deployment configuration

 Dependencies / Policies / Edge Autonomy: VCAT-Edge is designed to continue operating if the connection to the cloud is lost. If the

connection is lost, the fact that images are always written to a local volume first ensures that video streams continue to be captured and

information is not lost

 Disposability: If a VCAT-Edge instance fails, it automatically restarts and retrieves the required deployment configuration from the VCAT-

Cloud instance. Because data is persisted in the VCAT-Cloud instance, only the data cached at the Edge is lost in the event of a failure

 Capability Sensitive: Each VCAT-Edge instance would “discover” its local environment, i.e., determine the IP-address of the RTSP-endpoint

that the camera represents. Local capability or environment discovery means that the VCAT-Edge instance automatically adapts its behavior

to the local environment, rather than requiring explicit configuration. Explicit configuration would be difficult to manage in large, constantly

changing environments

 Data Storage: As already discussed above, VCAT-Edge instances only cache / buffer data

 Metrics / Logs: In a production environment, the VCAT-Edge offers a set of metrics that are actionable by a non-expert operator. These

metrics / logs indicate for example, whether the VCAT-Edge application or the entire Edge needs to be restarted (i.e., an action that could be

taken by a non-expert operator).

Operations: VCAT-Edge is designed to require no site-specific configuration – at least no site-specific configuration

that could not be automatically configured, e.g., through discovery operations, API calls, etc.

Conclusion
& Next Steps

This paper is a first edition and may experience revisions. Future papers related to sub-sections of

this paper are anticipated. To reach out with feedback, collaboration requests, or questions, please

create an issue on the .CNCF Runtime TAG GitHub page

How to Get
Involved

The CNCF IoT Edge Working Group has regular meetings, a mailing list, and a Slack. See the

 of the working group GitHub page for the most up to date information.

We welcome the reader to get involved by presenting Edge related projects, bringing an idea for

an area of work for the group, or helping to revise this whitepaper and/or draft a follow-up paper.

Communication section

E d g e N a t i v e A p p l i c a t i o n
D e s i g n B e h a v i o r s W h i t e p a p e r IoT Edge Working Group

https://github.com/cncf/tag-runtime
https://github.com/cncf/tag-runtime/blob/master/wg/iot-edge.md#communication

	1. Cover
	A4 - 1
	A4 - 2
	A4 - 3
	A4 - 4
	A4 - 5
	A4 - 6
	A4 - 7
	A4 - 8
	A4 - 9

