

1. License Grant
This report is licensed under the Creative Commons Attribution-NoDerivatives Licence 4.0
(International) . Put simply, subject to the terms and conditions of this license, you are free
to:

Share — You can reproduce the report or incorporate parts of the report into one or
more documents or publications, for commercial and non-commercial purposes.

Under the following conditions:

Attribution — You must give appropriate credit to SlashDataTM and to The Linux
Foundation as sponsors of this report, and indicate if changes were made. In that case,
you may do so in any reasonable manner, but not in any way that suggests that
SlashDataTM endorses you or your use.

NoDerivatives — you cannot remix or transform the content of the report. You may not
distribute modified content.

2. Limitation of Liability
SlashDataTM, believes the statements contained in this publication to be based upon
information that we consider reliable, but we do not represent that it is accurate or
complete and it should not be relied upon as such. Opinions expressed are current
opinions as of the date appearing in this publication only and the information, including
the opinions contained herein, are subject to change without notice. Use of this
publication by any third party for whatever purpose should not and does not absolve such
third party from using due diligence in verifying the publication’s contents. SlashDataTM
disclaims all implied warranties, including, without limitation, warranties of merchantability
or fitness for a particular purpose.

SlashDataTM, its affiliates, and representatives shall have no liability for any direct,
incidental, special, or consequential damages or lost profits, if any, suffered by any third
party as a result of decisions made, or not made, or actions taken, or not taken, based on
this publication.

The analyst of the developer economy | formerly known as VisionMobile
SlashData © Copyright 2023 | Some rights reserved

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Brayton Noll is a behavioral scientist with a
background in climate change and environmental
research. He holds a PhD from TU Delft in
computational social-science with his thesis
focusing on human behavioral dynamics and
climate adaptation. He has five years of experience
working with data analytics.

brayton.noll@slashdata.co

Nikita Solodkov is a multidisciplinary
researcher with a particular interest in using
data-driven insights to solve real-world
problems. He holds a PhD in Physics and has
over five years of experience in data analytics
and research design.

nikita.solodkov@slashdata.co

6

5

19

7

23

WebAssembly is a binary instruction format
that provides a portable compilation target
for a wide range of programming
languages. It aims to take advantage of the
common hardware capabilities of a wide
range of platforms to enable execution at
near-native speeds.

The aim of this report is to investigate the
current state of this technology. We will
explore the languages for which developers
use WebAssembly as a compilation target
and the performance benefits it provides
when migrating their projects. We will also
look at aspects that attract developers to
WebAssembly, the challenges they face,
and how optimistic they are about the
future adoption of this technology. Finally,
we will conclude by focusing on the
WebAssembly System Interface (WASI),
gauging familiarity levels and uncovering
the key motivations behind its usage.

The findings of this report are based on
data collected from an online survey
designed, produced, and carried out by
SlashData in collaboration with the Linux
Foundation and the Cloud Native
Computing Foundation (CNCF). The survey
reached 255 respondents who use
WebAssembly and took place over a period
of two weeks in Q3 2023 (21 June – 4
August).

https://webassembly.org/
https://wasi.dev/
https://www.slashdata.co/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://cncf.io/
https://cncf.io/

• The scope of WebAssembly has grown far beyond the web, with
many using it for applications across a wide range of
applications and services. ➜

• The overall sentiment on the future adoption of WebAssembly is
mostly optimistic for both web and non-web environments.
However, some developers are not yet convinced by what this
technology has to offer. ➜

• The added flexibility and improved performance that
WebAssembly offers attract developers to utilise it in a multitude
of ways. With many overlaps, developers write applications that
aim to use WebAssembly from the start and port or migrate
existing applications with the use of this technology. ➜

• When migrating existing applications to WebAssembly, 30% of
respondents experience performance benefits of more than
50%. ➜

• JavaScript stands out as the most popular programming
language that is used for WebAssembly applications. ➜

• Rust stands out in popularity in WebAssembly projects
compared to other use cases. ➜

• 34% of WebAssembly users state that they are currently using
the WebAssembly System Interface (WASI) in their projects. A
further 34% report planning to adopt it in the next 12 months. ➜

• Portability and easier deployment are the most important
aspects that attract developers to WASI. ➜

• HTTP, IO/streams, and SQL stand out as the most anticipated
upcoming WASI features. ➜

1. WebAssembly

The capabilities of WebAssembly have grown considerably since
its release in 2017, and so too has its viability of being used in
stable software projects. While this technology was designed to be
a part of the open web platform, its usage is not limited to the
web environment. It is worth noting that while WebAssembly is
still primarily used to develop web applications, this is changing
over time as WASI matures (see Chapter 2).

More specifically, 58% of our respondents indicate this in a multi-
select question about the types of applications or services for
which they use WebAssembly. Beyond this, we see a significant
representation of this technology across a wide range of projects.
This indicates that WebAssembly has a lot of potential and can be
beneficial to all developers across a multitude of sectors and not
just those involved in front-end web development.

3%

14%

18%

18%

18%

19%

21%

22%

24%

25%

27%

28%

30%

32%

35%

58%

Other

Serverless

Augmented or virtual reality

Scientific computing

Image processing

Encryption

Audio/video processing

Platform emulation

Design or graphics tools

Edge computing

Backend services (excluding Serverless)

Games

Artificial inteligence

Internet of things

Data visualisation

Web applications

% of respondents (n=255)

1. WebAssembly

The wide scope of applications WebAssembly can be used for is
made possible by the many benefits it offers. Faster loading times
(23%) and opportunities to explore new use cases and
technologies (22%) are the most frequently mentioned aspects
that have convinced respondents of this survey to start using
WebAssembly.

We also see that sharing code between projects (20%), the use of
binaries that run anywhere (18%), and the technology being
language agnostic (18%) have relatively high selection rates. The
acknowledgement of these benefits indicates that WebAssembly is
well-recognised not only for its performance-related benefits but
also for the flexibility it brings to software development.

3%

9%

14%

14%

15%

15%

16%

17%

18%

18%

18%

19%

20%

20%

22%

23%

Other

Follows W3C standards

Seamless integration with JavaScript

Company policy

Reduced cloud computing costs

Access to native libraries

Growing community and ecosystem

Porting existing applications

Language agnostic

Sandboxed security

Binaries run anywhere

Efficient execution of computationally intensive tasks

Improved performance over JavaScript

Sharing code between projects

Exploring new use cases and technologies

Faster loading times

% of respondents (n=254)

1. WebAssembly

With the flexibility that WebAssembly offers, developers can take
advantage of its features in a multitude of ways. Our data indicate
that 76% of WebAssembly users are developing new applications
with plans to use this technology from the start. A further 64% are
taking advantage of the portability that WebAssembly offers by
porting their existing applications to new platforms. We also see
that 62% are migrating existing applications to new programming
languages on the same platform.

We note that there is a large overlap between the above-
mentioned methods, with 34% indicating their involvement in all
three across their projects. Some developers may see tremendous
benefits from migrating existing applications to new languages
and porting them to new platforms simultaneously. In such cases,
WebAssembly provides an easy, two-in-one solution that brings
consistency along with all the other benefits that this technology
has to offer.

1. WebAssembly

% of respondents (n=209)

Writing new
applications (76%)

Porting existing
applications to new
platforms (64%)

Migrating existing applications
to new languages on the same
platform (62%)

19%

34%

11%

10%
7%

13%

6%

1. WebAssembly

When migrating existing applications to new languages in
WebAssembly projects, 37% of respondents report observing
performance1 increases in the 21% to 50% range. A further 30%
report that the performance of their applications has increased by
more than 50% as a result of switching languages. This highlights
that a large percentage of developers are already seeing one of
the key benefits of WebAssembly in their projects and sets up a
promising future for the technology. However, we should note a
small group (6%) of developers report experiencing minimal
performance benefits, suggesting that there may still be ways to
go in the pursuit of native speeds.

1 Respondents were asked to consider the speed of their applications as the main
performance metric.

2%
4%

20%

37%

24%

6% 7%

It decreased 0% to 10% 11% to 20% 21% to 50% 51% to 100% More than
100%

Not sure / I
don't know

% of respondents who have migrated existing applications (n=187)

1. WebAssembly

With a selection rate of 45%, JavaScript stands out as the most
popular programming language for WebAssembly projects. This
likely stems from the strongly anchored base of JavaScript in web
development, with it being the most popular language for some
time. Developers may wish to reuse the code they have already
built in JavaScript in WebAssembly projects. However, we should
note that most of its lead over the other languages comes from
the “also using” category, with only 13% indicating primary usage.

We asked developers which programming languages or platforms
they use WebAssembly as a compilation target in their projects.
Respondents were asked to select the language that they use the
most as primary and any other languages that they are also using
in this context.

1. WebAssembly

2%

2%

2%

2%

3%

4%

3%

4%

2%

3%

7%

7%

11%

9%

10%

13%

13%

11%

11%

12%

11%

13%

14%

17%

19%

20%

16%

22%

18%

20%

20%

18%

32%

Other

Ruby

Kotlin

Swift

COBOL

Go

C

AssemblyScript

TypeScript

PHP

Rust

.NET

Java

Python

C++

C#

JavaScript

Primary Also using

% of respondents (n=255)

1. WebAssembly

C

PHPRust

C++
C#

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 30% 40% 50% 60%

U
sa

ge
 fo

r W
eb

As
se

m
bl

y
ap

pl
ic

at
io

ns
%

 o
f r

es
po

nd
en

ts
 (n

=2
55

)

Usage by the wider developer community (Q1 2023)2

% of the global developer population (n=15,720)

On comparing the results of this survey to our broader research2,
we find that the adoption of most languages aligns well with their
global usage levels across other types of projects. From this point
of view, we see that Python (29%) and Java (29%) are under-
represented in WebAssembly projects. On the other end of the
spectrum, the popularity of Rust in WebAssembly projects (23%)
far exceeds its total usage across all types of projects (10%).

2 The list of languages excludes COBOL, AssemblyScript, and the .NET platform while
combining JavaScript and TypeScript. More information can be found in our “State of
the Developer Nation” report, which is based on data collected in our global survey
that was fielded in Q1 2023 (24th edition).

https://www.slashdata.co/free-resources/state-of-the-developer-nation-24th-edition?
https://www.slashdata.co/free-resources/state-of-the-developer-nation-24th-edition?

1. WebAssembly

As is the case with all technologies, developers can face a wide
range of challenges while working with WebAssembly. 83% of the
respondents from this survey report being affected by at least
one of the listed challenges in their projects.

Difficulties with debugging and troubleshooting are mentioned by
19% of respondents, placing it at the top of the list. This highlights
the increased complexity involved in working with WebAssembly,
with many nuances that go beyond code readability. An example
of this can be seen in 29% of respondents indicating that they
have suffered from one of multiple runtime-related issues. These
manifest through either experiencing different performances
(15%) or a lack of consistent developer experiences (15%)
between runtimes.

Only 6% of respondents mention that using WebAssembly does
not provide sufficient benefits when it comes to the performance
of their applications. As noted earlier, With the performance
benefits being very important to the respondents, this indicates
that WebAssembly manages to meet the expectations of most
developers.

1. WebAssembly

% of respondents (n=254)

17%

1%

6%

7%

8%

9%

11%

11%

11%

12%

13%

13%

13%

14%

14%

15%

15%

19%

No challenges

Other

Does not provide enough improvement in performance

No clear use cases

Preferred framework not supported

Slow evolution of W3C standards

Tools are too hard to use

Preferred language not supported

Insufficient non-browser APIs

Binaries are too big

Too many tools to choose from

Too much custom code required

Compatibility issues with certain browsers

Lack of learning materials

Lack of comprehensive tooling

Lack of consistent developer experiences between runtimes

Different performance between runtimes

Debugging and troubleshooting is difficult

1. WebAssembly

The overall sentiment on the future adoption of WebAssembly is
mostly optimistic for both web and non-web environments. With
WebAssembly being web-based first, the sentiment on its future
adoption is higher for the web than for non-web environments.
More specifically, 39% of respondents are very optimistic about
WebAssembly applications running on the web, while only 26%
are for non-web environments.

Around 22% indicate that they are pessimistic about its future
adoption for either web (15%) or non-web environments (15%).
Considering that this includes developers who are already using
WebAssembly, this indicates that some developers are not yet
convinced by what this technology has to offer. However, it is
important to note that it is an evolving technology with many
features yet to come, some of which we will explore in the
following section of this report. 5%

7%

10%

7%

24%

15%

35%

32%

26%

39%

Non-web environmets

Web environments

Very pessimistic Somewhat pessimistic Neutral Somewhat optimistic Very optimistic

% of respondents (n=250)

2. WebAssembly System Interface

With all the benefits of WebAssembly, there is a lot of interest in
using this technology beyond the browser. WebAssembly System
Interface (WASI) is a modular system interface for WebAssembly
aims to do precisely that. This is done through a collection of
standardised APIs that do not depend on browsers and are not
required to be compatible with JavaScript. Our data suggest that
34% of WebAssembly users state that they are currently using
WASI in their projects, and a further 34% report planning to adopt
it in the next 12 months.

11%

20%

34% 34%

2%

Never heard of it Heard of it, but
have no clear
plans to use it

Heard of it, and
planning to use
it in the next 12

months

Currently using it
in my projects

Stopped using it

% of respondents (n=252)

https://github.com/WebAssembly/WASI/blob/main/Proposals.md
https://github.com/WebAssembly/WASI/blob/main/Proposals.md

2. WebAssembly System Interface

We asked respondents who are currently using or planning to use
WASI in their projects about their rationale. Our data indicates
that portability and easier deployment are the most important
aspects that attract developers to WASI, each being mentioned by
42% of our respondents. Along with other attributes, these can
help propel the widespread adoption of WebAssembly for those
who want to take advantage of its benefits beyond its use in web
applications.

21%

27%

28%

29%

35%

37%

42%

42%

Incremental implementation

Consistent behaviour

Modularity

Runtime-independent

WebAssembly-native

Reduced compatibility issues

Easier deployment

Portability

% of respondents who are currently using or
planning to use WASI (n=171)

2. WebAssembly System Interface

Just like WebAssembly, WASI APIs are developed as proposals
through a standardised W3C process. We asked respondents who
are currently using or planning to use WASI which features1 they
are looking forward to the most. HTTP (35%) stands out as the
most anticipated feature, with a selection rate of 35%. This is
closely followed by IO/streams (31%) and SQL (30%), along with
key-value store (27%), runtime config (27%), and filesystem (26%)
slightly further down the line.

11%

12%

13%

14%

14%

18%

20%

21%

21%

23%

26%

27%

27%

30%

31%

35%

Preopens

Blob-store

Distributed lock service

Clocks

Stdin, stdout, stderr

Random

Sockets

Environment

Poll

Messaging

Filesystem

Runtime config

Key-value store

SQL

IO/streams

HTTP

% of respondents (n=169)

1 A list of active WASI proposals can be found on GitHub.

https://github.com/WebAssembly/meetings/blob/main/process/phases.md
https://github.com/WebAssembly/WASI/blob/main/Proposals.md

In Q2 2023, SlashData designed and ran an online survey for The Cloud Native
Computing Foundation (CNCF) to explore the current state of the WebAssembly
ecosystem. We conducted the analysis presented in this report based on the 255
respondents who replied to this custom survey. Many of the questions in this
custom survey are specifically designed and co-created to address the CNCF’s
business objectives.

Every SlashData survey is monitored and cleaned to ensure the highest standards
of retained responses. Our proprietary cleansing is designed to mitigate and
remove opportunistic, fraudulent and bot responses. Consisting of multiple criteria
formulated around logic rules, speed, consistency and response taking behaviour;
this holistic assessment is key to our continued success.

Developer population sizing
Developer segmentation

Why developers are adopting
competitor products – and how you

can fix that

Emerging platforms – augmented &
virtual reality, machine learning

We survey 30,000+ developers annually – across Web, Desktop,

Cloud, Mobile, Industrial IoT, AR/VR, Machine Learning and

Data Science, Games, Consumer Electronics and

Apps/Extensions for 3rd party ecosystems - to help companies

understand who developers are, what they buy and where they

are going next.

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

