
Avoid overspending on
Kubernetes
Webb Brown
Niko Kovacevic

About us

Niko is a Founding Engineer on the Kubecost
team and a maintainer of the Kubecost open
source project.

Webb is CEO of Kubecost. He is a former Google
PM where he led teams building monitoring &
performance tools.

Kubernetes is a powerful tool that presents great
opportunities to reduce costs... but it can make it
easier to overspend on cloud too. Why?

1. Enables more decentralized deployments
2. Promotes faster release cycles
3. Powerful abstractions for programmatically

provisioning resources

Reducing spend will always touch one of these inputs...

 { time provisioned } * { quantity of resource } * { price of resource}

 1 2 3 1 2 3

{ resource efficiency }

5 anti-patterns for
overspending

Externally provisioned cloud resources without an active owner.
Orphaned resources

#5

 1

Orphaned resources
Common examples:

● Persistent volumes
● Elastic IPs
● Load Balancers
● Databases

Oftentimes caused during application teardown or by oversight.

Impact: 10% of spend

Difficulty: Easy

Orphaned resource solutions
● Some mechanism to detect when orphaned resources cross a certain dollar

threshold
○ Implementation can be alerting rules, dashboards, or mgmt platform

● Part two: have a mechanism to identify an owner, e.g. labels or external
system of record

Cluster workloads that do not provide real business value.
Abandoned workloads

#4

 1

Abandoned resources
Common examples are:

● Deprecated deployments
● Outdated deployment configurations
● Dev environments on nights and weekends

Oftentimes caused by lack of awareness or organizational changes.

Impact: 10-20% of spend

Difficulty: Medium

Abandoned resources solutions
A mechanism to detect when abandoned resources cross a certain threshold.
Signals for abandonment can include a combination of:

● Little/no pod network traffic
● Low cpu usage
● No recent upgrades

Solution implementation can be alerting rule, dashboard, management platform, or
automation to address abandonment.

Part two: have a scalable mechanism to identify an owner

Kubernetes workloads gone crazy.
Rogue deployments

#3

 2

Rogue deployments
Common causes:

● Mis-configured deployments (e.g. 100s of replicas instead of 10s)
● Application bugs combined with improperly configured autoscaling
● Malware (e.g. cryptomining malware)

Impact: 20% of spend

Difficulty: Medium

● Alerts to detect unexpected or sharp increases in spend, i.e. spend anomalies

● Guardrails to prevent egregious errors from having major impact.

Rogue deployment solutions

Selecting a compute type (e.g. on-demand) inconsistent with application needs.
Incorrect usage type

#2

 3

Incorrect usage type
Most teams default to on-demand, when selecting between these categories:

● On-demand
● Reserved
● Spot/Preemptible

Impact: 70% of spend

Difficulty: Medium/Hard

Autoscaling environment

Spot or Preemptible environment

Preemptible

Demand

Reserved

Allocating excess compute capacity far in excess of application needs
Overprovisioning

#1

 2

Overprovisioning
Most teams run with 60-80% idle capacity, when they typically need half this
amount.

Impact: 50-60% of spend

Difficulty: Medium

Proactively avoiding these five patterns can...

● Reduce Kubernetes spend by 80%+ with no impact to reliability

● Help remove security or privacy risks in the process

● Not make you spend your whole live investigating spend overruns

Please reach out (team@kubecost.com) if we can help in any way!

mailto:team@kubecost.com

Questions?

Determining the cost of a resource...

 { time provisioned } * { quantity of resource } * { price of resource}

 1 2 3

Determining the cost of a resource...

 { time provisioned } * { quantity of resource } * { price of resource}

 1 2 3

Determining the cost of a resource...

 { time provisioned } * { quantity of resource } * { price of resource}

 1 2 3

