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The Setup

What are you talking about 
and how does this work? 

The Insights

Using the data, what can we 
apply to current industry trends 
and influences?  

The Data

Here’s what the data tell us.
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Performance derived vs 
performance described
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44,000 orgs
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160,000 projects

8



1000x larger than all 
State of DevOps Surveys
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What’s changed year 
over year? 
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Year 2019 2020

Days in set 30 30

Orgs >40,000 >44,000

Projects >150,000 >160,000

Second Year for Analysis
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State of DevOps Report 
Metrics

 Deployment Frequency 
 Lead time to Change 
 Change Failure Rate 
 MTTR 

Description when 
mapping to CI

How often you initiate a 
pipeline 
Pipeline duration 
Pipeline failure rate 
Time from red to green

Metric

Mapping Metrics

Throughput 
Duration 
Success Rate 
Recovery Time 
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The Data

Here’s what the data tell us.
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Throughput



How often do you push 
code that triggers CI?
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Most projects configured 
to run per push to git server
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Percentile 2020 Value

5p 0.03

50p 0.70

90p 16.03

95p 32.125

Mean 8.22

Throughput



Most projects are not 
deploying dozens of 
times per day
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Why is this different 
from survey data?
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“Primary application or 
service you work on”
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Percentile 2020 Value 2019 Value

5p 0.03 0.03

50p 0.70 0.80

90p 16.03 13.00

95p 32.125 25.47

Mean 8.22 5.76

Throughput



Those leveraging CI well, 
are doing so even more 
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There are fewer 
developers worldwide 
pushing code
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Duration



How long does it take 
to get results? 
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5% of builds finish in 
< 12 seconds
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* That’s roughly 500,000 builds in this sample
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Percentile 2020 Value

5p 12 sec

50p 3.96 min

90p 21.35 min

95p 34.01 min

Mean 24.6 min

Duration



Half of all builds finish 
in under 4 minutes
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Percentile 2020 Value 2019 Value

5p 12 sec 10 sec

50p 3.96 min 3.38 min

90p 21.35 min 19.18 min

95p 34.01 min 31.73 min

Mean 24.6 min 26.76 min

Duration delta in a year



All pipelines are 
running longer
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Percentile 2020 Value 2019 Value

5p 12 sec 10 sec

50p 3.96 min 3.38 min

90p 21.35 min 19.18 min

95p 34.01 min 31.73 min

Mean 24.6 min 26.76 min

Duration delta in a year
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Success Rate



How often does your pipeline 
complete with a green status?
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Percentile 2020 Value

5p 0%

50p 61%

90p 100%

95p 100%

Mean 54%

Success Rate



Some of our sample dabbles 
with CI, but doesn’t get a 
working build
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Some of our sample  saw 
no failures within a month
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Percentile 2020 Value 2019 Value

5p 0% 0%

50p 61% 60%

90p 100% 100%

95p 100% 100%

Mean 54% 54%

Success Rate
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Percentile 2020 Value 2019 Value

50p 61% 60%

75p 89% 86%

85p 100% 98%

Success Rate
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Recovery Time



Time a pipeline sits 
in a failure state
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Percentile 2020 Value

5p 2.06 min

50p 55.11 min

90p 39 hours

95p 3.4 days

Mean 14.85 hours

Recovery Time



Quick Recovery Time can be 
from multiple contributors 
running in parallel
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The gap between 50th and 75th percentiles 
looks like it represents waiting until 
tomorrow to fix a failed build 
(from 55 min at 50p to 9.5 hours at 75p)
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Percentile 2020 Value 2019 Value

5p 2.06 min 2.83 min

50p 55.11 min 52.5 min

90p 39 hours 47 hours

95p 3.4 days 3.93 days

Mean 14.85 hours 16.61 hours

Recovery Time



Fastest Recovery Times have 
improved (10th and percentile 
and lower) year over year
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The Insights

Using the data, what can we 
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and influences?  
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How has the global pandemic 
impacted team performance?
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Throughput



Peak Throughput 
was April 2020
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After April, 
Throughput falls a bit
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Duration



For 75th percentile and above, Duration 
increased in Feb, the increase accelerated 
in March, decreased in April, and increased 
again in August to longest Duration
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Hypothesis: more tests were written 
in March, driving up Duration. In April, 
a concentrated effort on optimization
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Success Rate



Success Rates were the 
highest on record in April 2020
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Hypothesis: people working 
hard on core business stability
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Recovery Time



Since April, Recovery 
Time has been improving
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Orgs with the longest Recovery 
Times (75th percentile and above) 
have improved significantly
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Hypothesis: Fewer 
distractions* working at home
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*For some values of distraction.
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Branch Information
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Did the use of 
master branch 
decrease? 
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Not in any significant 
way….yet.
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Teams are innovating and 
experimenting on feature 
branches
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Success Rate on default branch 
higher than on non-default 
branches
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Success Rate is 80% on the default 
branch at 50th percentile and 100% 
for 75th percentile and above
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Success Rate at 50p is 80% for 
default and 58% for non-default 
branches
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Duration on default branches 
are faster at every percentile.
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Recovery Time is lower on 
default branch at every percentile.
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What development practices 
definitively work?



Success Rate does not 
correlate with company size
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Duration is longest 
for teams of one
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Recovery Time decreases with 
increased team size (up to 200)
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Longest Recovery Times 
are from teams of one.
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Performance is better with more 
than one contributor as shown 
by multiple indicators 
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Software is 
collaborative
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Is “Don’t Deploy on Friday” a 
real thing?



70% less Throughput 
on weekends
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11% less Throughput 
on Friday (UTC).
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9% less Throughput 
on Monday (UTC).
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Conclusion: About the same amount of 
work happens Monday or Friday. So 
people not holding back on pushing code 
on Fridays. 
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What Language Trends 
emerge?
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21.73% JavaScript 2.44% Vue
11.36% TypeScript 2.12% Kotlin
9.56% Python 1.70% HCL
9.04% Ruby 1.59% Swift
6.16% HTML 1.26% C++
5.37% Java 1.21% Dockerfile
4.92% PHP 1.08% C#
3.89% Go 1.00% TSQL
3.17% CSS 0.96% Jupyter Notebook
2.99% Shell 0.83% Elixir

Languages in our sample



88

Language Throughput
1 Ruby 11 PHP
2 TypeScript 12 Java
3 Go 13 C#
4 Python 14 Jupyter Notebook
5 Kotlin 15 Shell
6 Elixir 16 Vue
7 Swift 17 C++
8 HCL 18 HTML
9 JavaScript 19 CSS

10 TSQL 20 Dockerfile
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Language Success Rate at 50p
1 Vue 11 Elixir
2 CSS 12 PHP
3 Shell 13 Jupyter Notebook
4 Dockerfile 14 Python
5 TSQL 15 Ruby
6 HTML 16 Java
7 HCL 17 Kotlin
8 Go 18 C#
9 TypeScript 19 C++

10 JavaScript 20 Swift
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Language Recovery Time at 50p

1 Go 11 Vue
2 JavaScript 12 Jupyter Notebook
3 Elixir 13 Kotlin
4 HCL 14 Java
5 Shell 15 Scala
6 Python 16 Ruby
7 TypeScript 17 PHP
8 CSS 18 TSQL
9 C# 19 Swift

10 HTML 20 C++
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Language Duration at 50p

1 Shell 11 PHP
2 HCL 12 TypeScript
3 CSS 13 Java
4 HTML 14 Elixir
5 Gherkin 15 TSQL
6 JavaScript 16 Kotlin
7 Vue 17 Scala
8 Go 18 Ruby
9 Jupyter Notebook 19 C++

10 Python 20 Swift
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Final Thoughts



When mapped against survey surveying 
data, CI users at 50p show up between 
medium and high performers at an org level 
(vs project level). 
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If you are average at using a CI 
platform, you’ll be right on the line 
between medium and high performer.
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Our most frequent CI users have 
better outcomes on our four 
critical metrics
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More collaborators 
means better outcomes
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We’re hiring. 

circleci.com/careers

http://circleci.com/careers
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Thank you
Michael Stahnke @stahnma 
Ron Powell @whyD0My3y3sHurt


