
1

DevOps from a
Different Data Set
What 30 million workflows reveal about high performing teams

Michael Stahnke
VP Platform Engineering
@stahnma

Ron Powell
Technical Content
Marketing Manager
@whyD0My3y3sHurt

2

The Setup

What are you talking about
and how does this work?

The Insights

Using the data, what can we
apply to current industry trends
and influences?

The Data

Here’s what the data tell us.

3

The Setup

What are you talking about
and how does this work?

4

5

Performance derived vs
performance described

6

44,000 orgs

7

160,000 projects

8

1000x larger than all
State of DevOps Surveys

9

What’s changed year
over year?

10

11

Year 2019 2020

Days in set 30 30

Orgs >40,000 >44,000

Projects >150,000 >160,000

Second Year for Analysis

12

13

State of DevOps Report
Metrics

 Deployment Frequency
 Lead time to Change
 Change Failure Rate
 MTTR

Description when
mapping to CI

How often you initiate a
pipeline
Pipeline duration
Pipeline failure rate
Time from red to green

Metric

Mapping Metrics

Throughput
Duration
Success Rate
Recovery Time

14

The Setup

What are you talking about
and how does this work?

The Insights

Using the data, what can we
apply to current industry trends
and influences?

The Data

Here’s what the data tell us.

15

The Data

Here’s what the data tell us.

16

Throughput

How often do you push
code that triggers CI?

17

Most projects configured
to run per push to git server

18

19

Percentile 2020 Value

5p 0.03

50p 0.70

90p 16.03

95p 32.125

Mean 8.22

Throughput

Most projects are not
deploying dozens of
times per day

20

Why is this different
from survey data?

21

“Primary application or
service you work on”

22

23

Percentile 2020 Value 2019 Value

5p 0.03 0.03

50p 0.70 0.80

90p 16.03 13.00

95p 32.125 25.47

Mean 8.22 5.76

Throughput

Those leveraging CI well,
are doing so even more

24

There are fewer
developers worldwide
pushing code

25

26

Duration

How long does it take
to get results?

27

5% of builds finish in
< 12 seconds

28

* That’s roughly 500,000 builds in this sample

29

Percentile 2020 Value

5p 12 sec

50p 3.96 min

90p 21.35 min

95p 34.01 min

Mean 24.6 min

Duration

Half of all builds finish
in under 4 minutes

30

31

Percentile 2020 Value 2019 Value

5p 12 sec 10 sec

50p 3.96 min 3.38 min

90p 21.35 min 19.18 min

95p 34.01 min 31.73 min

Mean 24.6 min 26.76 min

Duration delta in a year

All pipelines are
running longer

32

33

Percentile 2020 Value 2019 Value

5p 12 sec 10 sec

50p 3.96 min 3.38 min

90p 21.35 min 19.18 min

95p 34.01 min 31.73 min

Mean 24.6 min 26.76 min

Duration delta in a year

34

Success Rate

How often does your pipeline
complete with a green status?

35

36

Percentile 2020 Value

5p 0%

50p 61%

90p 100%

95p 100%

Mean 54%

Success Rate

Some of our sample dabbles
with CI, but doesn’t get a
working build

37

Some of our sample saw
no failures within a month

38

39

Percentile 2020 Value 2019 Value

5p 0% 0%

50p 61% 60%

90p 100% 100%

95p 100% 100%

Mean 54% 54%

Success Rate

40

Percentile 2020 Value 2019 Value

50p 61% 60%

75p 89% 86%

85p 100% 98%

Success Rate

41

Recovery Time

Time a pipeline sits
in a failure state

42

43

Percentile 2020 Value

5p 2.06 min

50p 55.11 min

90p 39 hours

95p 3.4 days

Mean 14.85 hours

Recovery Time

Quick Recovery Time can be
from multiple contributors
running in parallel

44

The gap between 50th and 75th percentiles
looks like it represents waiting until
tomorrow to fix a failed build
(from 55 min at 50p to 9.5 hours at 75p)

45

46

Percentile 2020 Value 2019 Value

5p 2.06 min 2.83 min

50p 55.11 min 52.5 min

90p 39 hours 47 hours

95p 3.4 days 3.93 days

Mean 14.85 hours 16.61 hours

Recovery Time

Fastest Recovery Times have
improved (10th and percentile
and lower) year over year

47

48

The Setup

What are you talking about
and how does this work?

The Insights

Using the data, what can we
apply to current industry trends
and influences?

The Data

Here’s what the data tell us.

49

The Insights

Using the data, what can we
apply to current industry trends
and influences?

50

How has the global pandemic
impacted team performance?

51

Throughput

Peak Throughput
was April 2020

52

After April,
Throughput falls a bit

53

54

Duration

For 75th percentile and above, Duration
increased in Feb, the increase accelerated
in March, decreased in April, and increased
again in August to longest Duration

55

Hypothesis: more tests were written
in March, driving up Duration. In April,
a concentrated effort on optimization

56

57

Success Rate

Success Rates were the
highest on record in April 2020

58

Hypothesis: people working
hard on core business stability

59

60

Recovery Time

Since April, Recovery
Time has been improving

61

Orgs with the longest Recovery
Times (75th percentile and above)
have improved significantly

62

Hypothesis: Fewer
distractions* working at home

63

*For some values of distraction.

64

Branch Information

65

Did the use of
master branch
decrease?

66

Not in any significant
way….yet.

67

Teams are innovating and
experimenting on feature
branches

68

Success Rate on default branch
higher than on non-default
branches

69

Success Rate is 80% on the default
branch at 50th percentile and 100%
for 75th percentile and above

70

Success Rate at 50p is 80% for
default and 58% for non-default
branches

71

Duration on default branches
are faster at every percentile.

72

Recovery Time is lower on
default branch at every percentile.

73

74

What development practices
definitively work?

Success Rate does not
correlate with company size

75

Duration is longest
for teams of one

76

Recovery Time decreases with
increased team size (up to 200)

77

Longest Recovery Times
are from teams of one.

78

Performance is better with more
than one contributor as shown
by multiple indicators

79

Software is
collaborative

80

81

Is “Don’t Deploy on Friday” a
real thing?

70% less Throughput
on weekends

82

11% less Throughput
on Friday (UTC).

83

9% less Throughput
on Monday (UTC).

84

Conclusion: About the same amount of
work happens Monday or Friday. So
people not holding back on pushing code
on Fridays.

85

86

What Language Trends
emerge?

87

21.73% JavaScript 2.44% Vue
11.36% TypeScript 2.12% Kotlin
9.56% Python 1.70% HCL
9.04% Ruby 1.59% Swift
6.16% HTML 1.26% C++
5.37% Java 1.21% Dockerfile
4.92% PHP 1.08% C#
3.89% Go 1.00% TSQL
3.17% CSS 0.96% Jupyter Notebook
2.99% Shell 0.83% Elixir

Languages in our sample

88

Language Throughput
1 Ruby 11 PHP
2 TypeScript 12 Java
3 Go 13 C#
4 Python 14 Jupyter Notebook
5 Kotlin 15 Shell
6 Elixir 16 Vue
7 Swift 17 C++
8 HCL 18 HTML
9 JavaScript 19 CSS

10 TSQL 20 Dockerfile

89

Language Success Rate at 50p
1 Vue 11 Elixir
2 CSS 12 PHP
3 Shell 13 Jupyter Notebook
4 Dockerfile 14 Python
5 TSQL 15 Ruby
6 HTML 16 Java
7 HCL 17 Kotlin
8 Go 18 C#
9 TypeScript 19 C++

10 JavaScript 20 Swift

90

Language Recovery Time at 50p

1 Go 11 Vue
2 JavaScript 12 Jupyter Notebook
3 Elixir 13 Kotlin
4 HCL 14 Java
5 Shell 15 Scala
6 Python 16 Ruby
7 TypeScript 17 PHP
8 CSS 18 TSQL
9 C# 19 Swift

10 HTML 20 C++

91

Language Duration at 50p

1 Shell 11 PHP
2 HCL 12 TypeScript
3 CSS 13 Java
4 HTML 14 Elixir
5 Gherkin 15 TSQL
6 JavaScript 16 Kotlin
7 Vue 17 Scala
8 Go 18 Ruby
9 Jupyter Notebook 19 C++

10 Python 20 Swift

92

Final Thoughts

When mapped against survey surveying
data, CI users at 50p show up between
medium and high performers at an org level
(vs project level).

93

94

95

If you are average at using a CI
platform, you’ll be right on the line
between medium and high performer.

96

Our most frequent CI users have
better outcomes on our four
critical metrics

97

More collaborators
means better outcomes

98

99

We’re hiring.

circleci.com/careers

http://circleci.com/careers

100

Thank you
Michael Stahnke @stahnma
Ron Powell @whyD0My3y3sHurt

