
Linkerd 2.9
 mTLS for TCP, ARM support, and more! 

Oliver Gould @olix0r



Ultralight, ultrafast, security-first 
service mesh for Kubernetes.

🔥 4+ years in production
🔥 5,000+ Slack channel members
🔥 10,000+ GitHub stars
🔥 100+ contributors
🔥 Weekly edge releases
🔥 Open governance, neutral home

And many more...



History of Linkerd

2/2016 1/2017

0.1

9/2018

2.0

Two parallel branches of development:

🚀 Linkerd 2.x: ultralight, zero-config, Kubernetes-first (active)

🚀 Linkerd 1.x: JVM-based and multi-platform (maintenance)

2010-2015



What does Linkerd do?

⚡Observability: Golden metrics: 
success rates, latencies, throughput; 
Service topologies; Distributed and 
ad-hoc tracing.

⚡ Connectivity: Load balancing, retries, 
timeouts, multi-cluster

⚡ Security: Transparent mTLS, cert 
management and rotation, policy*

Focused on operational simplicity



Microservices

A

C
B



Service Mesh: Data Plane

A

C
B

Proxy

Proxy
Proxy



Service Mesh: Control Plane

A

C
B

Proxy

Proxy
Proxy

Control Plane



Linkerd 2.x architecture



How is Linkerd designed?

In short, "do less, not more":

💪 Just works: Zero config, out of the box, for any Kubernetes app

💪 Ultralight: Introduce the bare minimum perf and resource cost

💪 Simple: Kubernetes-first; Minimal operational complexity

💪 Security first: Secure communication by default

Control plane: Go. ~200mb RSS (excluding metrics data). (Repo: linkerd/linkerd2).

Data plane: Rust. ~20mb RSS, <1ms p99 (!!!). (Repo: linkerd/linkerd2-proxy) 

Background reading: Linkerd v2: How Lessons from Production Adoption Resulted 
in a Rewrite of the Service Mesh (InfoQ)

https://github.com/linkerd/linkerd2
http://github.com/linkerd/linkerd2-proxy
https://www.infoq.com/articles/linkerd-v2-production-adoption/
https://www.infoq.com/articles/linkerd-v2-production-adoption/


Linkerd is designed to enable a zero-trust approach to security. But it's easy to 
claim you are secure. How do you accomplish it?

🔐 First, do no harm. Don't make things worse.

🔐 Secure the foundations. E.g. choice of Rust for Linkerd2-proxy

🔐 Build on top of Kubernetes. Don't reinvent the security wheel. (E.g.: use of 

ServiceAccounts for pod identity.)

🔐 No barrier to entry. E.g. mTLS is on by default!

🔐 Keep it simple. Complexity is the enemy of security. 

What is Linkerd's approach to security?



What does Linkerd use for its data plane?

A purpose-built service mesh proxy, linkerd2-proxy. Not Envoy!

🔐 Security first: Memory safety & minimal configuration surface

🐎 Ultralight, ultrafast: Rust compiles to native code. No GC!

🔍 Audited: Regular third-party security audits.

🚀 Modern async network stack: Built on Tokio, Hyper, H2, Tower, and the rest of 

the modern Rust async networking stack for safety and performance

100% open source. 100% audited. 100% awesome! github.com/linkerd/linkerd2-proxy

https://tokio.rs
https://github.com/hyperium/hyper
https://github.com/hyperium/h2
https://github.com/tower-rs/tower
https://github.com/linkerd/linkerd2-proxy


What Does it Do?



Peak-EWMA Load Balancing
● HTTP/1.x, HTTP/2 (gRPC), & TCP 🆕

● Efficiently distributes requests across k8s Deployments, etc

● Client-side: No centralized balancer state

● Latency-aware: Automatically optimizes for locality

● Backed by k8s Services

● 🆕 ServiceTopology-aware 

● Bypasses kube-proxy

● No application changes





Automatic, transparent mutual TLS
● Meshed traffic automatically secured

● Extends workload identity for zero-trust communication
○ Bootstrapped from k8s ServiceAccounts

● Automatic pod certificate rotation
○ Private keys never leave the pod’s memory

● Can bootstrap from cert-manager

● Does not conflict with Ingress/Application TLS

● No application changes 🔐

https://cert-manager.io/docs/


Transparent HTTP/2 Multiplexing
● All meshed HTTP/1.1 traffic over HTTP/2 (pod-to-pod, multi-cluster)

● Amortizes connection overhead (TCP, mTLS)

● Substantially reduces memory requirements for high-traffic sidecars

● Unique to Linkerd ✨💖✨

● No application changes



Traffic Splitting
● For canary and blue/green

● Splits requests between k8s Services

● Uses the Service Mesh Interface’s TrafficSplit API

● Can be driven by Flagger

Now for TCP!

https://smi-spec.io/
https://flagger.app/


The Service Mesh Interface



Seamless, secure multi-cluster

Connects Kubernetes services across cluster boundaries in a way that's secure, 
fully transparent to the application, and independent of network topology.

● Unified trust domain across all 
clusters

● Separate failure domains so 
there's no SPOF

● Works over the open Internet so 
no difficult L3/L4 requirements

● A unified communication model 
with in-cluster communication



High-fidelity Prometheus Visibility
● Uniform: Every pod gets the same, app-independent traffic metrics

● HTTP- and gRPC-aware

● Rich k8s workload metadata

● Raw latency histograms: no avg on latencies

● Can be enhanced with OpenAPI (Swagger) & gRPC (Protobuf) specs

● Works out-of-the-box; or bring your own! 🆕

● No application changes



Distributed Tracing with OpenCensus 
● Linkerd participate in your application’s OpenCensus tracing

● Application changes required



Ad-hoc tracing with Linkerd Tap
● Tap into the request stream at runtime

● Authorized via k8s RBAC

● No application changes



New in 2.9.0
● Multi-arch builds for x86_64, Arm32 & Arm64 

● Support for Kubernetes ServiceTopologies
○ Discovery now supports Kubernetes EndpointSlices

● Bring your own Prometheus & Grafana

● Big changes to linkerd2-proxy
○ New service discovery scheme -- no more DNS dependency

○ mTLS, Load Balancing & TrafficSplit for arbitrary TCP protocols

○ More resilient HA control plane communication -- no more kube-proxy

○ Multi-threaded runtime supports scaling beyond a single CPU

○ Reduced Latency, CPU, and Memory usage

https://kubernetes.io/docs/concepts/services-networking/service-topology/
https://kubernetes.io/docs/tasks/administer-cluster/enabling-endpointslices/


Demo Time



A brief tour of the Linkerd Lab
● k3d 3.2.0 (k8s 1.18)

● linkerd stable-2.9.0

● ort (oliver’s runtime tester ;)

https://k3d.io/
https://linkerd.io/
https://github.com/olix0r/ort/tree/3d1e0ac11b00313435276e573b2497e8b1b80650


Looking Forward



What’s the community working on?

🗺 Minimized, modular control plane

🗺 Multicluster routing for all TCP traffic

🗺 Improved TCP visibility

🗺 Bounded ServiceAccount tokens

🗺 Traffic policy

🗺 FIPS 140-2

🗺 Off-cluster mesh

🗺 Experimenting with proxy_wasm



Linkerd Community Anchor

★ Become a recognized expert 

★ Tell your story in any medium

★ Submit your talk proposal with confidence

★ Get editing or writing support

Learn more on linkerd.io/community/anchor 🤩



Get involved!
💚 Development is all on GitHub
💚 Thriving community in the Slack
💚 Formal announcements on the

CNCF mailing lists
💚 Monthly community calls
💚 Formal 3rd-party security audits

Linkerd has a friendly, welcoming 
community! Join us!

Linkerd is 100% Apache v2 licensed, owned by a 
neutral foundation (CNCF), and is committed to 
open governance. 

https://github.com/linkerd
https://slack.linkerd.io/
https://lists.cncf.io/g/cncf-linkerd-users
https://calendar.google.com/calendar/embed?src=buoyant.io_j28ik70vrl3418f4oldkdici7o%40group.calendar.google.com
https://github.com/linkerd/linkerd2/blob/master/SECURITY_AUDIT.pdf
https://www.cncf.io/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/

