Linkerd 2.9

MTLS for TCP, ARM support, and more!

Oliver Gould @olixOr

T LINKERD

) LINKERD

Ultralight, ultrafast, security-first
service mesh for Kubernetes.

4+ years in production

5,000+ Slack channel members
10,000+ GitHub stars

100+ contributors

Weekly edge releases

Open governance, neutral home

& & 6 6 6 6 2

=™ CLOUD NATIVE
COMPUTING
L= FOUNDATION

NORDSTROM

ebay
OfferUp

AATTEST

() KAIROS

STRAVA

ffcommerce CHASE O

EVERQUOTE @ Expedia

PAYBASE—_ Walmart

clover gl Webex

e

onnect

X CLOUD

(f()ttawa SUBSPAGC:

And many more...

History of Linkerd

[JLINKERDO1 []SLOUD NATIVE [LINKERD20

k=l COMPUTING FOUNDATION

2010-2015 2/2016 1/2017 9/2018

Two parallel branches of development:
5 Linkerd 2.x: ultralight, zero-config, Kubernetes-first (active)

5 Linkerd 1.x: JVM-based and multi-platform (maintenance)

What does Linkerd do? -
Observability: Golden metrics: —— - || Mo pe
success rates, latencies, throughput; MG oo

Service topologies; Distributed and *
ad-hoc tracing.

S deploy/web

Connectivity: Load balancing, retries,
timeouts, multi-cluster

= Resources

Security: Transparent mTLS, cert .
management and rotation, policy*

Focused on operational simplicity

PosT

Microservices

Service Mesh: Data Plane

Proxy A

N

— Prox

Service Mesh: Control Plane

Control Plane
Proxy A

‘\» Proxy C

Linkerd 2.x architecture

(H kubernetes
_ ,__—‘ — 1
Browser - Grafana » Prometheus GOLANG .
A A L ! ’
""""""""""" =] « »©® Service
¢« ¢« » Mesh

-l -+ Interface

Pluggable
Ingress

Service

How is Linkerd designed?

In short, "do less, not more™:

Just works: Zero config, out of the box, for any Kubernetes app
Ultralight: Introduce the bare minimum perf and resource cost
Simple: Kubernetes-first; Minimal operational complexity

Security first: Secure communication by default

Control plane: Go. ~200mb RSS (excluding metrics data). (Repo: linkerd/linkerd?).

Data plane: Rust. ~20mb RSS, <Tms p99 (). (Repo: linkerd/linkerd2-proxy)

Background reading: Linkerd v2: How [essons from Production Adoption Resulted
in a Rewrite of the Service Mesh (InfoQ)

https://github.com/linkerd/linkerd2
http://github.com/linkerd/linkerd2-proxy
https://www.infoq.com/articles/linkerd-v2-production-adoption/
https://www.infoq.com/articles/linkerd-v2-production-adoption/

What is Linkerd's approach to security?

Linkerd is designed to enable a zero-trust approach to security. But it's easy to
claim you are secure. How do you accomplish it?
¥ First, do no harm. Don't make things worse.
¥ Secure the foundations. E.g. choice of Rust for Linkerd2-proxy
¥ Build on top of Kubernetes. Don't reinvent the security wheel. (E.g.: use of
ServiceAccounts for pod identity.)
Y No barrier to entry. E.g. mTLS is on by default!

! Keep it simple. Complexity is the enemy of security.

What does Linkerd use for its data plane?

A purpose-built service mesh proxy, linkerd2-proxy. Not Envoy!

¥ Security first: Memory safety & minimal configuration surface
D Ultralight, ultrafast: Rust compiles to native code. No GC!
<, Audited: Regular third-party security audits.

5% Modern async network stack: Built on Tokio, Hyper, H2, Tower, and the rest of

the modern Rust async networking stack for safety and performance

100% open source. 100% audited. T00% awesome! github.com/linkerd/linkerd2-proxy

https://tokio.rs
https://github.com/hyperium/hyper
https://github.com/hyperium/h2
https://github.com/tower-rs/tower
https://github.com/linkerd/linkerd2-proxy

What Does it Do?

Peak-EWMA Load Balancing

e HTTP/.x, HTTP/2 (gRPC), & TCP I

e Efficiently distributes requests across k8s Deployments, etc

e Client-side: No centralized balancer state | ServiceA

e Latency-aware: Automatically optimizes for locality

e Backed by k8s Services

v

€LLLLL

s mServiceTopology-aware

A
CLLLLLLLLLLLLLLLLLLLCCcccccc?d

ALLLLLLLLLL

v
s § LLLLLLLLLLLKLK
z v

e Bypasses kube-proxy

<

Failing

v

LLLLLLLLLLLLLLLLLLL

v
v
v
v
v
v
v
v
;

linkerd

€L

v
‘S»)»)»»»»»)»»»)»»»v

DIIIIIIIIIIIY,
v

LKL«

e No application changes SHSE /11,

((((((((((I £<< <<

LLLLLLLLLLK]

ServiceB

((((((((((I LKL

Latency by Load Balancer

2000 -

1500 -
2 Balancers
T —~— EWMA
8 —— Least Loaded
% 1000 ———r 1| == Round Robin
I

500 -
L
90 959798 99 99.9 99.99 99.999

Percentile

Automatic, transparent mutual TLS

e Meshed traffic automatically secured

e Extends workload identity for zero-trust communication
o Bootstrapped from k8s ServiceAccounts

e Automatic pod certificate rotation
o Private keys never leave the pod’s memory

e Can bootstrap from cert-manager

e Does not conflict with Ingress/Application TLS

e No application changes

https://cert-manager.io/docs/

Transparent HTTP/2 Multiplexing

e All meshed HTTP/1.1 traffic over HTTP/2 (pod-to-pod, multi-cluster)
e Amortizes connection overhead (TCP, mTLS)

e Substantially reduces memory requirements for high-traffic sidecars
e Unique to Linkerd * %

e No application changes

Traffic Splitting

e For canary and blue/green
e Splits requests between k8s Services

e Uses the Service Mesh Interface’s TrafficSplit API

e Can be driven by Flagger

Proxy App i
olo // rrﬁl primary primary

o0
1

© N rﬁ.gﬂ Proxy I App
canary canary <_‘

@ Load Tester ————> © - * Traffic Split

https://smi-spec.io/
https://flagger.app/

The Service Mesh Interface

What SMI covers

Service Mesh Interface is a specification that covers the most common
service mesh capabilities:

o Traffic policy - apply policies like identity and transport encryption across
services

o Traffic telemetry - capture key metrics like error rate and latency between
services

e Traffic management - shift traffic between different services

Seamless, secure multi-cluster

Connects Kubernetes services across cluster boundaries in a way that's secure,
fully transparent to the application, and independent of network topology:.

Cluster: west e Unified trust domain across all
[Multi-Cluster Gateway] ClUSterS

Cluster: east

"N e Separate failure domains so
M 6 | Mult|i-CIuster Gateway) \
o ? there's no SPOF

through the gateway

Gateway automatically
{_establishes connection to C

Service . t J e Works over the open Internet so
no difficult L3/L4 requirements

e A unified communication model
with in-cluster communication

High-fidelity Prometheus Visibility

e Uniform: Every pod gets the same, app-independent traffic metrics

e HTTP-and gRPC-aware

e Rich k8s workload metadata

e Raw latency histograms: no avg on latencies

e Can be enhanced with OpenAPI (Swagger) & gRPC (Protobuf) specs
e \Works out-of-the-box; or bring your own! m

e No application changes

Distributed Tracing with OpenCensus

e Linkerd participate in your application’s OpenCensus tracing

e Application changes required

v VOte-bOt: /api/vote * View Options v

Trace Start: November 8, 2019 3:38 PM Duration: 8.04ms = Services: 4 Depth: 12 Total Spans: 18
Oms 2.01ms 4.02ms 6.03ms 8.04ms

_—F—
|

Service & Operation v > ¥V » 0ms 2.01ms 4.02ms 6.03ms 8.04ms

v vote-bot /apiivote
v I linkerd-proxy /api/vote?choices=... . 7.3 11
v | linkerd-proxy /apifvote7chol... 6.97ms

v | linkerd-proxy /apifvote?...

v | linkerd-proxy /apit...
v web /api/vote
v | web emojivoto...
v | linkerd-pr... S 1 50
v | linkerd... O 1 67
v | link... —
— 0.73ms

|+ & 0.17ms

> I linkerd-pr... 2.36ms
v | linkerd... 2.07ms T

v | link... 3ms R

Ul [s 5 e EEE—

Ad-hoc tracing with Linkerd Tap

Tap into the request stream at runtime

Authorized via k8s RBAC

No application changes

(press q to quit)

(press a/LeftArrowKey to scroll left, d/RightArrowKey to scroll right)

Source
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
10.244.4.1
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
10.244.2.1
linkerd-prometheus-5dd896954c-g7snn
10.244.3.1
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
linkerd-prometheus-5dd896954c-g7snn
10.244.0.1
linkerd-prometheus-5dd896954c-g7snn
10.244.1.1

10.244.3.1

10.244.1.1
linkerd-prometheus-5dd896954c-g7snn
10.244.3.1

10.244.0.
10.244.1
10.244.1
10.244.2.
10.244.3

bR e e

Destination

10.244.0.219

10.244.4.222

10.244.1.16

10.244.4.221

10.244.2.82

10.244.3.116

10.244.3.115
linkerd-grafana-548d67bdd-ftv62
10.244.4.220

10.244.0.220
linkerd-destination-6d9d9dfbf6-fq6hd
linkerd-sp-validator-77f8b989-g6bjq
linkerd-web-55bfcf9698-5wxwf
linkerd-controller-78844b9b87-2z8sgl
linkerd-grafana-548d67bdd-ftv62
linkerd-destination-6d9d9dfbf6-fq6hd
linkerd-sp-validator-77f8b989-g6bjq

linkerd-proxy-injector-648d6864b6-f8fqt

linkerd-controller-78844b9b87-z8sgl
linkerd-web-55bfcf9698-5wxwf
linkerd-prometheus-5dd896954c-g7snn
linkerd-web-55bfcf9698-5wxwf

linkerd-proxy-injector-648d6864b6-f8fqt

linkerd-sp-validator-77f8b989-g6bjq
linkerd-controller-78844b9b87-2z8sgl
linkerd-prometheus-5dd896954c-g7snn
linkerd-destination-6d9d9dfbf6-fq6hd

linkerd-proxy-injector-648d6864b6-f8fqt

Method
GET

Path
/metrics
/metrics
/metrics
/metrics
/metrics
/metrics
/metrics
/api/health
/metrics
/metrics
/ready
/metrics
/ping
/metrics
/metrics
/metrics
/ready
/metrics
/ping
/ready
/-/healthy
/metrics
/ping
/ping
/ready
/-/ready
/ping
/ready

Count

NNNNRNRNNNNNNWOGOWWWWwWwWwsSssnonaao

346us
453ps
459us

2ms
461ps
375us
432us
646US
537us
602ps

Worst

Last
2ms
2ms
2ms

Success Rate

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

00%

New in 2.9.0

e Multi-arch builds for x86_64, Arm32 & Arm64

e Support for Kubernetes ServiceTopologies

o Discovery now supports Kubernetes EndpointSlices

e Bring your own Prometheus & Grafana

e Big changes to linkerd2-proxy

o New service discovery scheme -- no more DNS dependency

o mTLS, Load Balancing & TrafficSplit for arbitrary TCP protocols

o More resilient HA control plane communication -- no more kube-proxy
o Multi-threaded runtime supports scaling beyond a single CPU

o Reduced Latency, CPU, and Memory usage

https://kubernetes.io/docs/concepts/services-networking/service-topology/
https://kubernetes.io/docs/tasks/administer-cluster/enabling-endpointslices/

Demo Time

A brief tour of the Linkerd Lab

e k3d 3.2.0 (k8s 1.18)
e |inkerd stable-2.9.0

e ort (oliver’s runtime tester ;)

https://k3d.io/
https://linkerd.io/
https://github.com/olix0r/ort/tree/3d1e0ac11b00313435276e573b2497e8b1b80650

L ooking Forward

What's the community working on?

Minimized, modular control plane
Multicluster routing for all TCP traffic
Improved TCP visibility

Bounded ServiceAccount tokens
Traffic policy

FIPS 140-2

Off-cluster mesh

Experimenting with proxy wasm

Linkerd Community Anchor

Become a recognized expert
Tell your story in any medium
Submit your talk proposal with confidence

Get editing or writing support

Learn more on linkerd.io/community/anchor «&;

Get involved!

Development is all on GitHub
Thriving community in the Slack
Formal announcements on the
CNCF mailing lists

Monthly community calls
Formal 3rd-party security audits

€€ €¢€¢

Linkerd has a friendly, welcoming
community! Join us!

Linkerd is 1T00% Apache v2 licensed, owned by a
neutral foundation (CNCF), and is committed to
open governance.

Cole Calistra @coleca - Feb 2 v
FACT: If you are considering service mesh and @linkerd isn't first on your list
you're making a HUGE mistake. It just WORKS. Plain and simple. No hours of
YAML configuration files to write. It just WORKS. Thank you @wm and
@BuoyantlO team! @CloudNativeFdn

Site Reliability Balladeer @SethMcCombs - 8 Dec 2018 v
Replying to @michellenoorali

It took me a total of 5 minutes to set up @linkerd in my QA environment and
BOOM metrics for days. | can't remember the last time | set up something so
easy, it was almost...fun?

ZAK @zakknill - Feb 14 v
Just used #linkerd2 for the first time to solve a real production issue. The
observability tooling is life changingly good! Thanks @linkerd

Abhinav Khanna @Abhinav14435957 - 12 Dec 2018 v

Having used Linkerd, | think the team has done a fantastic job of making it feel
magical. #linkerd

Michelle Noorali @michellenoorali - 8 Dec 2018 v
seriously the linkerd2 getting started guide is so good and the check command
is just beautiful %% linkerd.io/2/getting-star... @linkerd

Nigel Wright @nigelwright_nz - 18 Nov 2018 v
Whoa @linkerd just blew my mind a little. That was crazy easy to setup and start
getting real info about my #k8s deployments.

Stephen Pope @stephenpope - 26 Oct 2018 v
. @linkerd Very pleased with #Linkerd2 - deployed my app (with auto-proxy-

injection) and #itjustworked - Had all the info | needed on the dashboard -
Thanks very much (great docs too)

Darren Shepherd @ibuildthecloud - Feb 14 v
I'm consistently impressed with @linkerd 2.0. If you are looking at istio, try
linkerd first. |takes about 5 minutes. Then you'll have something working and in
place while you try to understand and deploy istio for the next 9 months.

Q 9 10 63 ¥ 200 8

https://github.com/linkerd
https://slack.linkerd.io/
https://lists.cncf.io/g/cncf-linkerd-users
https://calendar.google.com/calendar/embed?src=buoyant.io_j28ik70vrl3418f4oldkdici7o%40group.calendar.google.com
https://github.com/linkerd/linkerd2/blob/master/SECURITY_AUDIT.pdf
https://www.cncf.io/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/

