Linkerd 2.9

MTLS for TCP, ARM support, and more!
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) LINKERD

Ultralight, ultrafast, security-first
service mesh for Kubernetes.

4+ years in production

5,000+ Slack channel members
10,000+ GitHub stars

100+ contributors

Weekly edge releases

Open governance, neutral home
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And many more...



History of Linkerd
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2010-2015 2/2016 1/2017 9/2018

Two parallel branches of development:
5 Linkerd 2.x: ultralight, zero-config, Kubernetes-first (active)

5 Linkerd 1.x: JVM-based and multi-platform (maintenance)



What does Linkerd do? -
Observability: Golden metrics: —— - || Mo pe
success rates, latencies, throughput; MG oo

Service topologies; Distributed and *
ad-hoc tracing.

S deploy/web

Connectivity: Load balancing, retries,
timeouts, multi-cluster

= Resources

Security: Transparent mTLS, cert .
management and rotation, policy*

Focused on operational simplicity
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Linkerd 2.x architecture
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How is Linkerd designed?

In short, "do less, not more™:

Just works: Zero config, out of the box, for any Kubernetes app
Ultralight: Introduce the bare minimum perf and resource cost
Simple: Kubernetes-first; Minimal operational complexity

Security first: Secure communication by default

Control plane: Go. ~200mb RSS (excluding metrics data). (Repo: linkerd/linkerd?).

Data plane: Rust. ~20mb RSS, <Tms p99 (). (Repo: linkerd/linkerd2-proxy)

Background reading: Linkerd v2: How [essons from Production Adoption Resulted
in a Rewrite of the Service Mesh (InfoQ)



https://github.com/linkerd/linkerd2
http://github.com/linkerd/linkerd2-proxy
https://www.infoq.com/articles/linkerd-v2-production-adoption/
https://www.infoq.com/articles/linkerd-v2-production-adoption/

What is Linkerd's approach to security?

Linkerd is designed to enable a zero-trust approach to security. But it's easy to
claim you are secure. How do you accomplish it?
¥ First, do no harm. Don't make things worse.
¥ Secure the foundations. E.g. choice of Rust for Linkerd2-proxy
¥ Build on top of Kubernetes. Don't reinvent the security wheel. (E.g.: use of
ServiceAccounts for pod identity.)
Y No barrier to entry. E.g. mTLS is on by default!

! Keep it simple. Complexity is the enemy of security.



What does Linkerd use for its data plane?

A purpose-built service mesh proxy, linkerd2-proxy. Not Envoy!

¥ Security first: Memory safety & minimal configuration surface
D Ultralight, ultrafast: Rust compiles to native code. No GC!
<, Audited: Regular third-party security audits.

5% Modern async network stack: Built on Tokio, Hyper, H2, Tower, and the rest of

the modern Rust async networking stack for safety and performance

100% open source. 100% audited. T00% awesome! github.com/linkerd/linkerd2-proxy



https://tokio.rs
https://github.com/hyperium/hyper
https://github.com/hyperium/h2
https://github.com/tower-rs/tower
https://github.com/linkerd/linkerd2-proxy

What Does it Do?



Peak-EWMA Load Balancing

e HTTP/.x, HTTP/2 (gRPC), & TCP I

e Efficiently distributes requests across k8s Deployments, etc

e Client-side: No centralized balancer state | ServiceA

e Latency-aware: Automatically optimizes for locality

e Backed by k8s Services
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Latency by Load Balancer
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Automatic, transparent mutual TLS

e Meshed traffic automatically secured

e Extends workload identity for zero-trust communication
o Bootstrapped from k8s ServiceAccounts

e Automatic pod certificate rotation
o Private keys never leave the pod’s memory

e Can bootstrap from cert-manager

e Does not conflict with Ingress/Application TLS

e No application changes



https://cert-manager.io/docs/

Transparent HTTP/2 Multiplexing

e All meshed HTTP/1.1 traffic over HTTP/2 (pod-to-pod, multi-cluster)
e Amortizes connection overhead (TCP, mTLS)

e Substantially reduces memory requirements for high-traffic sidecars
e Unique to Linkerd * %

e No application changes




Traffic Splitting

e For canary and blue/green
e Splits requests between k8s Services

e Uses the Service Mesh Interface’s TrafficSplit API

e Can be driven by Flagger
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https://smi-spec.io/
https://flagger.app/

The Service Mesh Interface

What SMI covers

Service Mesh Interface is a specification that covers the most common
service mesh capabilities:

o Traffic policy - apply policies like identity and transport encryption across
services

o Traffic telemetry - capture key metrics like error rate and latency between
services

e Traffic management - shift traffic between different services



Seamless, secure multi-cluster

Connects Kubernetes services across cluster boundaries in a way that's secure,
fully transparent to the application, and independent of network topology:.

Cluster: west e Unified trust domain across all
[ Multi-Cluster Gateway ] ClUSterS

Cluster: east

"N e Separate failure domains so
M 6 | Mult|i-CIuster Gateway ) \
o ? there's no SPOF

through the gateway

Gateway automatically
{_establishes connection to C

Service . t J e Works over the open Internet so
no difficult L3/L4 requirements

e A unified communication model
with in-cluster communication



High-fidelity Prometheus Visibility

e Uniform: Every pod gets the same, app-independent traffic metrics

e HTTP-and gRPC-aware

e Rich k8s workload metadata

e Raw latency histograms: no avg on latencies

e Can be enhanced with OpenAPI (Swagger) & gRPC (Protobuf) specs
e \Works out-of-the-box; or bring your own! m

e No application changes




Distributed Tracing with OpenCensus

e Linkerd participate in your application’s OpenCensus tracing

e Application changes required
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Trace Start: November 8, 2019 3:38 PM  Duration: 8.04ms = Services: 4 Depth: 12 Total Spans: 18
Oms 2.01ms 4.02ms 6.03ms 8.04ms

_—F—
|

Service & Operation v > ¥V » 0ms 2.01ms 4.02ms 6.03ms 8.04ms

v vote-bot /apiivote
v I linkerd-proxy /api/vote?choices=... . 7.3 11
v | linkerd-proxy /apifvote7chol...  6.97ms

v | linkerd-proxy /apifvote?...

v | linkerd-proxy /apit...
v web /api/vote
v | web emojivoto...
v | linkerd-pr... S 1 50
v | linkerd... O 1 67
v | link... —
— 0.73ms

|+ & 0.17ms

> I linkerd-pr... 2.36ms
v | linkerd... 2.07ms T

v | link... 3ms R

Ul [ s 5 e EEE—



Ad-hoc tracing with Linkerd Tap

Tap into the request stream at runtime

Authorized via k8s RBAC

No application changes

(press q to quit)

(press a/LeftArrowKey to scroll left, d/RightArrowKey to scroll right)
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New in 2.9.0

e Multi-arch builds for x86_64, Arm32 & Arm64

e Support for Kubernetes ServiceTopologies

o Discovery now supports Kubernetes EndpointSlices

e Bring your own Prometheus & Grafana

e Big changes to linkerd2-proxy

o New service discovery scheme -- no more DNS dependency

o mTLS, Load Balancing & TrafficSplit for arbitrary TCP protocols

o  More resilient HA control plane communication -- no more kube-proxy
o  Multi-threaded runtime supports scaling beyond a single CPU

o Reduced Latency, CPU, and Memory usage


https://kubernetes.io/docs/concepts/services-networking/service-topology/
https://kubernetes.io/docs/tasks/administer-cluster/enabling-endpointslices/

Demo Time



A brief tour of the Linkerd Lab

e k3d 3.2.0 (k8s 1.18)
e |inkerd stable-2.9.0

e ort (oliver’s runtime tester ;)



https://k3d.io/
https://linkerd.io/
https://github.com/olix0r/ort/tree/3d1e0ac11b00313435276e573b2497e8b1b80650

L ooking Forward



What's the community working on?

Minimized, modular control plane
Multicluster routing for all TCP traffic
Improved TCP visibility

Bounded ServiceAccount tokens
Traffic policy

FIPS 140-2

Off-cluster mesh

Experimenting with proxy wasm



Linkerd Community Anchor

Become a recognized expert
Tell your story in any medium
Submit your talk proposal with confidence

Get editing or writing support

Learn more on linkerd.io/community/anchor «&;



Get involved!

Development is all on GitHub
Thriving community in the Slack
Formal announcements on the
CNCF mailing lists

Monthly community calls
Formal 3rd-party security audits

€€ €¢€¢

Linkerd has a friendly, welcoming
community! Join us!

Linkerd is 1T00% Apache v2 licensed, owned by a
neutral foundation (CNCF), and is committed to
open governance.

Cole Calistra @coleca - Feb 2 v
FACT: If you are considering service mesh and @linkerd isn't first on your list
you're making a HUGE mistake. It just WORKS. Plain and simple. No hours of
YAML configuration files to write. It just WORKS. Thank you @wm and
@BuoyantlO team! @CloudNativeFdn

Site Reliability Balladeer @SethMcCombs - 8 Dec 2018 v
Replying to @michellenoorali

It took me a total of 5 minutes to set up @linkerd in my QA environment and
BOOM metrics for days. | can't remember the last time | set up something so
easy, it was almost...fun?

ZAK @zakknill - Feb 14 v
Just used #linkerd2 for the first time to solve a real production issue. The
observability tooling is life changingly good! Thanks @linkerd

Abhinav Khanna @Abhinav14435957 - 12 Dec 2018 v

Having used Linkerd, | think the team has done a fantastic job of making it feel
magical. #linkerd

Michelle Noorali @michellenoorali - 8 Dec 2018 v
seriously the linkerd2 getting started guide is so good and the check command
is just beautiful %% linkerd.io/2/getting-star... @linkerd

Nigel Wright @nigelwright_nz - 18 Nov 2018 v
Whoa @linkerd just blew my mind a little. That was crazy easy to setup and start
getting real info about my #k8s deployments.

Stephen Pope @stephenpope - 26 Oct 2018 v
. @linkerd Very pleased with #Linkerd2 - deployed my app (with auto-proxy-

injection) and #itjustworked - Had all the info | needed on the dashboard -
Thanks very much (great docs too)

Darren Shepherd @ibuildthecloud - Feb 14 v
I'm consistently impressed with @linkerd 2.0. If you are looking at istio, try
linkerd first. |takes about 5 minutes. Then you'll have something working and in
place while you try to understand and deploy istio for the next 9 months.
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https://github.com/linkerd
https://slack.linkerd.io/
https://lists.cncf.io/g/cncf-linkerd-users
https://calendar.google.com/calendar/embed?src=buoyant.io_j28ik70vrl3418f4oldkdici7o%40group.calendar.google.com
https://github.com/linkerd/linkerd2/blob/master/SECURITY_AUDIT.pdf
https://www.cncf.io/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/

