
Managing your Policies and Standards
How to Create Policies with Rego and OPA

Ahmed Badran
CTO

About Me

Ahmed Badran
CTO

Agility vs. Stability

You are not alone!

The Cloud-Native Challenge

Objectives

• What is governance and why it is important
• How to establish a governance framework
• How Open Policy Agent and the Rego language could help
• Example policies for Kubernetes

“Based on a True Story”

- Could this be malicious?
- Who should we contact?
- Can I update it safely?

- Block all dev deployments?
- Force PR on all production changes?
- There is gotta be a better way!

Solution?
Issue

Governance Framework - Policy as Code

Governance: The ability of the operations team to verify and
enforce certain policies and standards across the entire
organization or within specific clusters

Governance Framework

- Targets
 which entities

- Policies
 what rules

- Triggers
 when to run

Open Policy Agent

OPA: as part of the CNCF project, the
Open Policy Agent (OPA) is a great tool
that allows organizations to easily define
custom policies for their Kubernetes
environments. Open Policy Agent policies
are written in a declarative policy language
called Rego

https://www.openpolicyagent.org/docs/latest/policy-language/

Rego Language
Rego: a declarative language to define policies where
statements are assertions that evaluate to true or false.

Rego Playground

Rego Playground

Deployment

- As Go library
- As REST API
- As Sidecar container (kube-mgmt)

Options

Gatekeeper
An extensible, parameterized policy library with native Kubernetes CRDs
that support audit functionalities and instantiating and extending the policy
library.

Gatekeeper 3.0 Architecture

JSON

Gatekeeper - Native Kubernetes CRDs

Constraints define Scope and Intent

Template

Real Time Enforcement

- No owner label
- Governance in real-time

Applying Deployment Manifest

Example Policies
• Check that readinessProbe and livenessProbe are defined in your containers spec

to guarantee that only healthy pods get traffic
• Enforce the settings of allowPrivilegeEscalation=false and mustRunAsNonRoot so

the container and its child process cannot escalate their privilege
• Verify that the spec’s replicas count is 2 or greater, to ensure redundancy in your

ReplicaSets for fault tolerance.
• Ensure that affinity.podAntiAffinity is set in your deployment spec to avoid having

multiple pods - from the same deployment - running on the same node.
• Check that no RoleBinding objects give patch access to users that you haven’t

approved.
• Check that container.image in all your specs are using a trusted container registry.
• Check for rules.apiGroups, rules.resources, and rules.verbs combinations that might

violate any of your access control policies.
• Avoid using hostPort and hostNetwork for any pod since this could limit the number

of places the pod could run, since hostIP.hostPort.protocol must be unique.

Audit
 The ability to see what resources are currently violating any given policy.

Status

Metrics
An HTTP endpoint used to collect performance metrics

Prometheus

Thanks
ahmed.badran@magalix.com

@a3badran

mailto:ahmed.badran@magalix.com

