
MicroK8s HA under the hood

Konstantinos Tsakalozos - Senior Engineer

Kubernetes with Dqlite

Kubernetes: ground rules

What is High Availability?

1. Elimination of single points of failure

2. Reliable crossover. In redundant systems

3. Detection of failures as they occur

High Availability Perception

For users

• Services are always available

High Availability Perception

For admins

• Control plane is always
available

• More than one nodes

• Workloads spread across
nodes

• Reliable persistent storage

High Availability Perception

For Kubernetes itself

• Datastore is always available

• Clustering

• Persistent storage
configured

• Load balancer floating IPs

MicroK8s is a k8s distribution

… and achieve much more

We focus on the datastore...

Lightweight Kubernetes

● CNCF conformant

● Minimal ops

● Efficient package

● Standalone or clustered

● X86 & ARM

● Edge & IoT

● Opinionated K8s

Focus on security

● Containerised Kubernetes

● Immutable container

● No moving parts, better security, simpler ops

● Automated, controllable updates

● Security patching

$ microk8s enable <features>

Juju

Self-healingHigh-availability Zero-ops

Zero-ops HA

• Datastore embedded into the API server

• Dqlite: the most popular embedded database made distributed

• At least three nodes needed

• Replication: API server ⇔ datastore

Stop worrying about the control plane

Zero-ops HA

• Every node is also a worker

• API server replication ⇔

• Datastore replication

• AND worker replication

Stop worrying about the workers

A single command to cluster

microk8s join

microk8s add-node K8s API

microk8s join K8s API

microk8s join K8s API

microk8s join K8s API

microk8s join K8s API

Simple clustering

microk8s add-node K8s APIDB Leader

microk8s join K8s APIDB Voter

microk8s join K8s APIDB Voter

microk8s join K8s APIDB Standby

microk8s join K8s APIDB Spare

Zero-ops HA clustering

K8s API

K8s API

K8s API

K8s API

K8s API

DB Leader

DB Spare

Self-healing HA cluster

DB Voter

DB VoterDB Leader

DB StandbyDB Voter

DB Standby

Demo!

Why dqlite and not etcd?

• Reliability

• SQLite is the most widely used DB

• A very well understood distributed SQLite

• Perfect for embedded devices

• Frictionless

• Transparent operations

• No DBadm needed

• Ownership

• Long term performance gains

• At least three nodes

• Two nodes stand-by

• Spare

• Extra nodes

• One leader

• Two voters

• Node role transitions happen within seconds from node failure

Autonomous High Availability

What
happens
if...

DC1 DC2

AZ1 AZ1

AZ2

MicroK8s voter MicroK8s voter

MicroK8s voter

MicroK8s standby

MicroK8s standby

MicroK8s spare

DC1 and DC2 get disconnected

If leader is on DC1

• The leader will step down
because he lost majority

○ in ~ 1 second

• Voters on DC2 vote for a new
leader

• DC1 freezes

• Spare node on DC2 becomes
voter

DC1 DC2

AZ1 AZ1

AZ2

MicroK8s voter MicroK8s voter

MicroK8s voter

MicroK8s standby

MicroK8s standby

MicroK8s spare

DC1 and DC2 get disconnected

If leader is on DC2

• No election needed

• DC1 freezes

• Spare node on DC2 becomes
voter

DC1 DC2

AZ1 AZ1

AZ2

MicroK8s voter MicroK8s voter

MicroK8s voter

MicroK8s standby

MicroK8s standby

MicroK8s spare

What’s next? • Failure domains

• FD-aware deployments

• Spread voters across FDs

• Weighted voter placement

• Hints for dqlite-hosting candidate nodes

• Performance improvements

• CPU and memory footprint

Resources

MicroK8s GitHub: github.com/ubuntu/microk8s

MicroK8s web: microk8s. io

#microk8s channel on slack.kubernetes.io

Snaps web: snapcraft.io

Charmed Kubernetes: ubuntu.com/kubernetes/docs

Cool K8s and Ubuntu demos on YouTube: youtube.com/celebrateubuntu/

https://github.com/ubuntu/microk8s
https://microk8s.io
http://slack.kubernetes.io/
https://snapcraft.io/
https://www.ubuntu.com/kubernetes/docs/overview
http://youtube.com/celebrateubuntu/

Try MicroK8s today!

www.microk8s.io

http://www.microk8s.io

