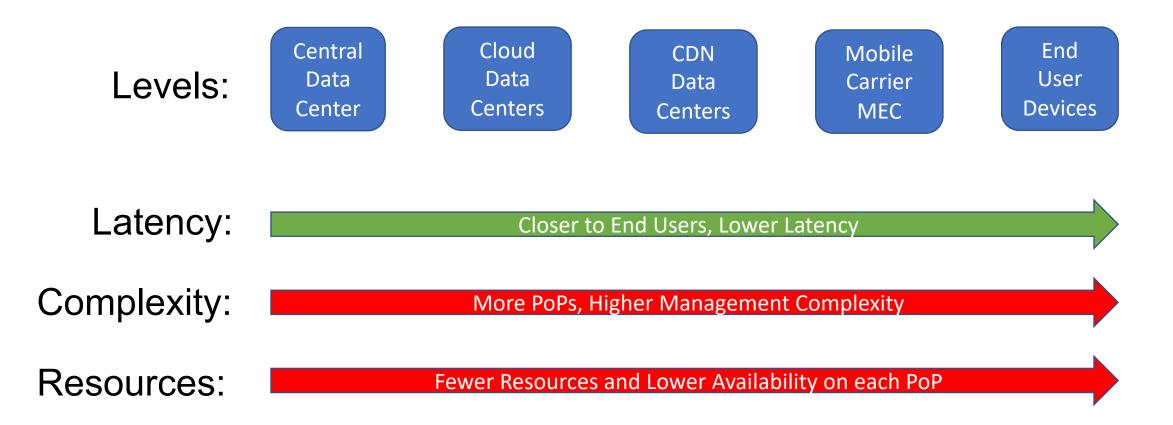
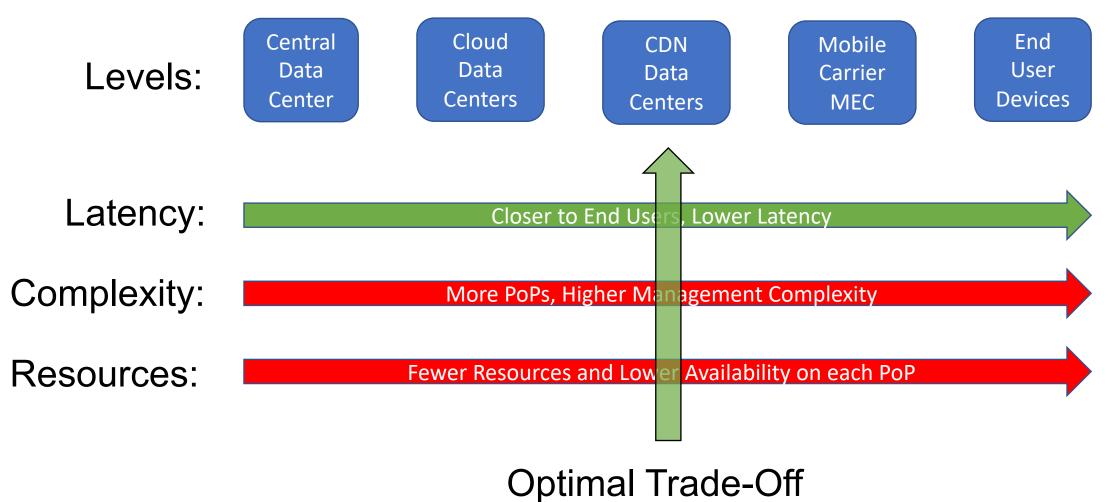
CDNetworks

Accelerate. Secure. Control.


Building Edge as a Service

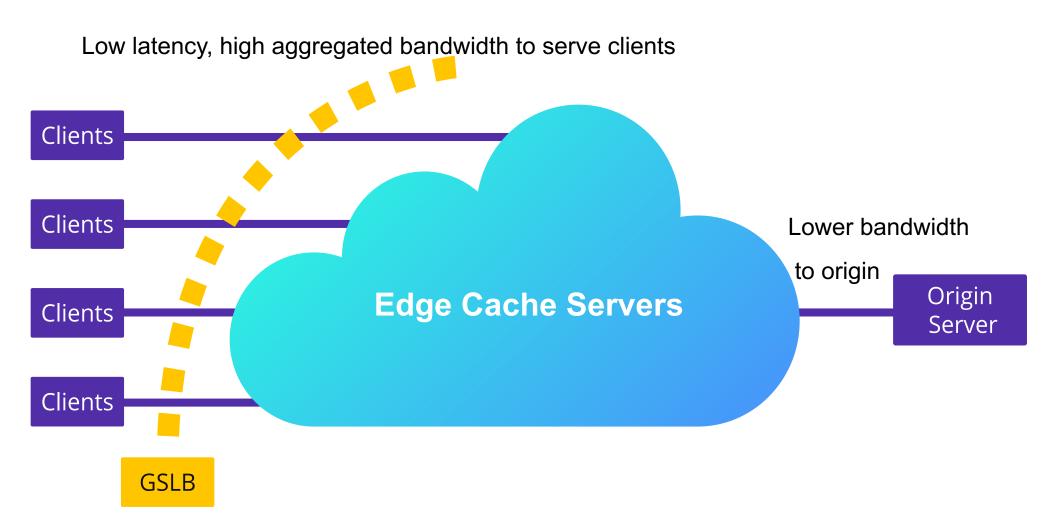
Dr. Bin Ni, CTO @ CDNetworks Nov 5, 2020

What is the "Edge"?



Different Levels of Edge

Different Levels of Edge



The Edge of a Content Delivery Network

How A CDN Works

CDN Service Latency in US and China

Platform	Median (ms)	Avail.
1. Citrix ITM Multi CDN Optimized **	* 19	99.98%
2. Fastly CDN	21	99.80%
3. CenturyLink CDN	21	99.76%
4. CacheFly CDN	21	99.74%
5. Akamai Object Delivery	21	99.73%
6. Azure CDN from Verizon	21	99.51%
7. Edgecast CDN	21	99.43%
8. Clark CDN	22 24	99 99.75%
17. CDNetworks	24	99.75%
18. Quantil CDN	24	99.43%

Platform	Median (ms)	Avail.
1. Alibaba Cloud CDN 2	11	99.22%
2. BaishanCloud CDN (China)	12	99.20%
3. Quantil CDN	13	99.15%
4. CDNetworks	13	99.14%
5. ChinaCache CDN	13	99.09%
6. Kingsoft Cloud CDN	14	99.20%
7. Baidu Cloud CDN	15	99.23%
8. Tencent Cloud CDN	22	99.28%
9. Azure CDN from Microsoft	73	82.70%
10. Akamai Object Delivery	87	97.70%

Data Source: "Citrix Country Report"

Cloud vs CDN PoPs

	Cloud	CDN	Comments
Global PoPs	~10	~1000	~100x
PoP Size	~1M Cores	~1K Cores	Smaller PoP Size
Total BW	~100 Gbps	~10 Tbps	Higher BW
Latency	~100 ms	~10 ms	Lower latency, higher reachability
Single PoP Availability	High (>99.99%)	Medium (~95%)	No guarantee for each single PoP
Overall Availability	High	Higher	GSLB guarantees overall availability
Number of Services	Too many	Caching, Security	
Number of Services	Too many	Caching, Security	

How Should Edge Computing Look Like ?

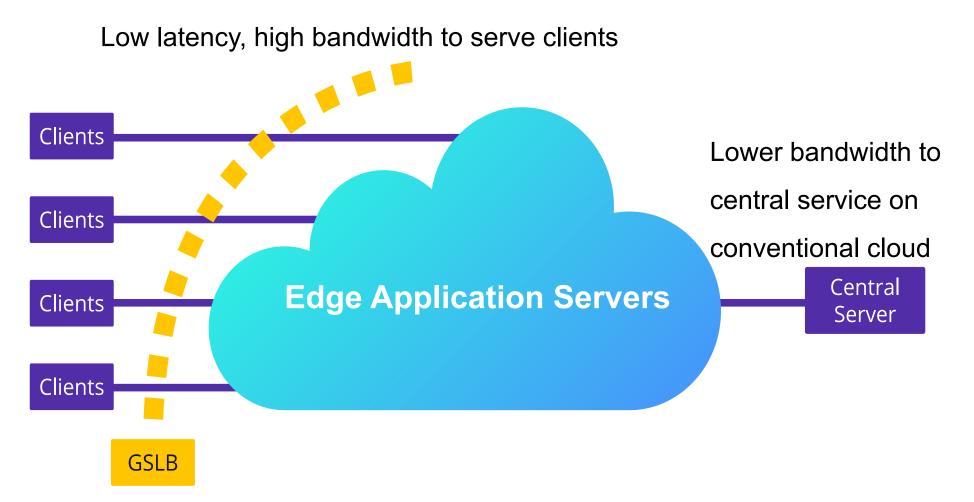
Edge Computing should NOT be

"Cloud Computing with lots of PoPs"

- Achieve high availability through GSLB
- The application should be "stateless"

About "Stateless"

- The module running on the Edge should be stateless
- State can be stored on the conventional cloud
- "My application really have to have state on the edge !!"
 - That is fine, but you have to be aware of the consequence.



How to Offer Edge as a Service

- Deploy K8s on every edge PoP, managed by a console.
- The customer (app developer) build the pods in their own K8s.
- Upload the yaml file on the console, distribute to PoPs all over the world.
- Expose the service through a domain name, GSLB will route the end users to the fastest PoP.

Live in Harmony with Conventional Cloud

App Architecture for Edge Computing

- Module Partitioning
 - High BW, Latency-Sensitive, Low Computation, Stateless Edge Computing Platform
 - Low BW, Latency-Insensitive, High Computation, Stateful Cloud
 - UI, Low Computation, Stateful Device
- Interaction Between Edge PoPs
 - Through a central service to discover each other, sync data etc.

Typical Applications (and non-Application) of ECP

Cloud (Edge) Gaming

- Module Partitioning
 - Process control signals, 3D rendering, video compression ECP
 - Save progress, data analysis Conventional Cloud
 - Video decompression, display, send control signals Device
- Multi-Player Interactions
 - Only support players on the same or nearby PoPs

Artificial Intelligence (Google Lens, Siri ...)

- Module Partitioning
 - Receive image/audio/video, AI inferencing, return results ECP
 - Machine learning, update the neuro networks Cloud
 - Collect image/audio/video, display results Device

Augmented Reality

- Module Partitioning
 - Receive video, AI inferencing, superimpose and compress video ECP
 - Machine learning, update NN Conventional Cloud
 - Collect video, display results Device

Real-time Data Analysis of 1000 Sensors in a Factory

- IoT does not automatically mean ECP should be used
 - For geographically concentrated applications, conventional cloud (either in data center or on-premises) is still a better fit

CDNetworks

Accelerate. Secure. Control.

Thank You!

info@cdnetworks.com | www.cdnetworks.com

