
The evolution of cloud orchestration systems from 
ephemeral to persistent storage

CNCF webinar
2020-10-07



Boyan Krosnov - CPO of StorPool

StorPool is

● very fast and very reliable scale-out block storage system
● software-defined
● API controlled, DevOps, New IT, integrations
● CNCF member; StorPool CSI

StorPool is integrated with a number of cloud orchestration systems 
- OpenStack, CloudStack, OpenNebula, OnApp, Kubernetes



● Cattle vs Pets
● Separation of code and state
● Historical review

○ AWS - EBS
○ OpenStack - Cinder
○ Kubernetes - CSI

● Conclusions

Agenda



Pets

Servers or server pairs that are treated as indispensable or 
unique systems that can never be down. Typically they are 
manually built, managed, and “hand fed”. Examples include 
mainframes, solitary servers, HA loadbalancers/firewalls 
(active/active or active/passive), database systems designed 
as master/slave (active/passive), and so on.

Cattle vs Pets



Cattle

Arrays of more than two servers, that are built using automated 
tools, and are designed for failure, where no one, two, or even three 
servers are irreplaceable. Typically, during failure events no human 
intervention is required as the array exhibits attributes of “routing 
around failures” by restarting failed servers or replicating data 
through strategies like triple replication or erasure coding. Examples 
include web server arrays, multi-master datastores such as 
Cassandra clusters, multiple racks of gear put together in clusters, 
and just about anything that is load-balanced and multi-master.

Cattle vs Pets



● Traditional IT -> Pets
● Modern IT & DevOps -> mostly Cattle

● even Cattle need persistent storage
● there are still many Pets around - physical-to-VM, VM-to-

container

Separation of code and state



In traditional IT

● x86 servers 
○ "compute"
○ multi-tier application
○ local disks in servers are just for the OS and software

● SAN (Block storage) or NAS (Filer) stores data
○ High availability
○ Shared system - multiple apps on one system
○ the same data accessed by multiple servers

Separation of code and state



Code:

● package application as a set of containers - reduce/remove all 
external dependencies. No deb/rpm/npm/pip hell.

● packaging for whole complex applications - multiple containers -
e.g. with Helm Charts

State:

● Started as "someone else's problem"
● State in database
● Shared filesystem
● State in object store / S3

Separation of code and state



● August 2006: EC2 (virtual machines) 

● August 2008: EBS (block storage service, virtual disks for virtual 
machines) - 2 years after EC2

● features added over time: boot from EBS, snapshot, clone, 
resize

History - Amazon EBS



● October 2010: first release

● some persistent volumes added into main project

● September 2012: Cinder service - block storage plugins

● Add features over time - booting, migration, encryption, resize

● The same pattern as AWS - 2 years from compute service to 
a modular persistent storage service.

History - OpenStack Cinder



● June 2014: first public release

● supporting stateful applications is an explicit project goal 
since 2016, StatefulSets

● some persistent volume support added into main project, 
FlexVolumes

● June 2018: 1.10 introduces CSI

● features added over time - raw block, cloning, snapshots, 
resize

History - Kubernetes CSI



● Cloud (orchestration) systems start with a romantic view of a 
pure world where every component of every application is 
stateless Cattle

● Reality sets in 2-4 years later
○ Even Cattle often need persistence
○ There are many Pets still alive and well

● You need a good solution for persistent storage in your cloud

Conclusions



Thank you
info@storpool.com


