
Experience Report:
Multi-Cloud Serverless on Knative

Mark Wang
Evan Anderson

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Why FaaS?

Ship Faster
• Scrum teams will be able to release frequently

• Scrum teams will start to own more of the technology stack

• There will be less tech debt

Transform the Culture
• Partner with application developers in defining the platform

• Allow teams to unblock themselves on platform features

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

2020 Strategic Initiative: 100% Bronze FaaS Certification

6

2018: 160+
Apps onprem

2019: 100% in
Cloud

2020: 100%
Bronze

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

FaaS Certification Roadmap
Phase Dec 2019 Jan 2020 Q1 Q2 Q3 Q4

Learn &
Experiment

Build
Foundation

FaaS
Accelerator()

FaaS Adoption

Application
Migration

PlannedOngoing

Technology Evaluation

Legend:

Upgrade Knative

Pilot Use Cases

Work Streams defined

Certification & Training
Program defined

Pilot Apps Identified

FaaS MVP 1.0

FaaS Reference
Implementations

Select Reference App
Patterns & Wave 1 Apps

Wave 1 Apps on FaaS

Define Target states:
FaaS, Containers, Retire

Containers Reference
Implementations

Wave 1 Apps on
Containers

24x7 Support Setup

Workshops & Trainings

Container 2.0

Wave 2 Apps on FaaS

Workshops & Trainings

Wave 3 Apps on FaaS

Retire Use Cases Retire Use Cases

Wave 2 Apps on
Containers

Bronze Certification Bronze Certification

Retire Use Cases

Bronze Certification

Open Standards

Additional Integrations

Adopt Open Contribution Model

Application Roadmap

FaaS 2.0 FaaS 4.0

Cross Functional Teams
on FaaS/CaaS

Workshops & TrainingsWorkshops & TrainingsPilot Apps
Workshops & Trainings

Experiment Knative

Completed

FaaS Pipeline

Additional Regions

FaaS 3.0

CaaS MVP 1.0

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Platform Release stages (released monthly)

Privileged and confidential 8

• Recommended for all developers

• Additional platform capabilities
– DMZ Support
– Eventing
– Distributed Tracing
– Spot instances

• Add Container-as-a-Service options

• Additional integrations
– Container Security

• Reference implementations: Static
Web Hosting

• Working base platform
– Kubernetes: EKS
– Knative
– Istio
– Azure DevOps
– Base images

• Pilot applications only

• Define model and working processes
– Open contribution model

• Initial training materials and
documentation

• 24x7 support

• Additional platform capabilities
– OIDC/OAuth
– Logging & Monitoring
– Onboarding automation
– CI/CD pipeline automation

• Open for early adopters

• Reference implementations: Java,
.Net, Python, Angular

• Improved training materials and
documentation

GA 3.x (Q3)MVP 1.x (Q1) GA 2.x (Q2)

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

FaaS 3.1 Feature Highlights

• Languages:

• Eventing:

• Security:

• Logging & Monitoring:

• Distributed tracing:

• Authentication:

• Network: Internal and DMZ

• Spot instances

• Blue/Green cluster automation

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

FaaS Platform Components

1. AWS EKS
Managed Control Plane for Kubernetes

2. Kubernetes
Container Orchestration

3. Istio
Ingress Control and Request Queuing

4. Knative
On-demand pod scaling and request routing, scale to zero

Privileged and confidential 10

Major Components in order of operation

Source: https://istio.io/blog/2019/knative-activator-adapter/knative-activator.png

Single Knative Cluster consists of:

• 40+ AWS components

• Tens of thousands lines of YAML

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

FaaS Accelerator() (Knative)

Private & Confidential
1
1

Certification Pipeline

CTCode Commit CI CD CM

Local Development
S&P FaaS Framework

Business Logic Configs

Cloud: AWS

Knative

EKS Kubernetes

Kubernetes Pod

Knative:
Provides FaaS capabilities on top of
Kubernetes. It is a framework/set of
extensions focusing on high-level
abstractions for common application use
cases like serving and eventing.

Local Development function code can be
tested by running the Docker image
locally in a container, as long as Knative-
specific integrations are not used. In
certain cases, deployment to a dev K8s
cluster will be needed.

Certification Pipeline will deploy Business
Logic (Function Code) as a Container
Image to Knative and eventually land on
Kubernetes such as AWS EKS

This is very portable; higher environments
will simply deploy the gold copy of the
Function artifact as Container Image

Istio Knative

Build
Docker
Image

Run
Container

Locally

Tagged
Docker
Image

Docker Registry

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Demo

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Adoption

In less than 1 year:

• 90% of the applications in scope have started or
completed FaaS functions

• 50% of teams have written FaaS functions

Privileged and confidential 13

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Serverless HTTP applications

• Knative works with applications which expose an HTTP server on a known port.

• Why HTTP:

– Ubiquitous, well-understood

– Ongoing improvements with HTTP/2, Websockets, etc

– Shares resources (IP, cert, routers) well

– If we know the protocol, we can do :magic:

Kubernetes supports applications which use multiple protocols and ports, and which have many scaling models.
The tradeoff is that Kubernetes requires a lot of settings even for a basic deployment.

Knative specializes Kubernetes for stateless HTTP applications. It’s a complement to the core Kubernetes
Deployment, StatefulSet, and Job abstractions.

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Serverless HTTP Applications

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp

spec:
selector:
matchLabels:
app: myapp

template:
metadata:
labels:
app: myapp

spec:
containers:
- image: docker.io/test/myapp
ports:
- name: http
containerPort: 8080

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: myapp

spec:
template:
spec:
containers:
- image: docker.io/test/myapp
ports:
- name: http

This also includes an autoscaler and some other
magic we’ll talk about soon!

… less YAML, too

apiVersion: v1
kind: Service
metadata:
name: myapp

spec:
ports:
- port: 80
targetPort: h2c

selector:
app: myapp

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Serverless HTTP Applications

What else do you get out of the box with Knative?

• Autoscaling (already covered)

• Automatic management of HTTP hostnames
– Map a wildcard address to your cluster, and no further need to touch DNS!

• Automatic tracking of previous states (Revisions)
– Every update to the Service’s spec creates a new Revision
– These Revisions are immutable and automatically garbage collected

• Ability to roll back and canary traffic between Revisions
– Can route traffic on a percentage basis, regardless of how many instances
– A traffic route can refer to a specific Revision, or the last Ready Revision
– Can also add tags to reach a specific Revision by a unique hostname – handy for testing

I promised some magic

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Serverless HTTPS applications

• Knative Serving can be configured to automatically provision certificates for your automatically-created
hostnames.

• Out of the box, this uses LetsEncrypt and certmanager

• You could also integrate this with your own CA

• Supports both DNS (wildcard) and HTTP certificate solvers

Requirements:

• Your serving domain must be reachable by LetsEncrypt (i.e. on the internet)

• LetsEncrypt supports about 50 certs/week/domain prefix

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

SSL in the real world at S&P

• Cluster-specific DNS zones: *.faas-blue.dev.example.com
– Contains a wildcard record pointing at the specific cluster

• Environment-specific DNS zones: *.faas.dev.example.com
– Contains a wildcard record which points at the currently-active cluster (blue or green)
– Can use DNS to perform active/active, active/passive, or weighted traffic routing

• AWS Certificate Manager SSL certificates provisioned for each cluster
– AWS CA provisions SSL certificates covering both the cluster-specific and environment-specific names
– Certificates are automatically created during cluster build with DNS validation for cluster SANs using AWS Route53
– Certificates are installed on the ingress loadbalancers

Privileged and confidential 20

*.faas.dev.example.com Weight 100

Weight 0

cluster-1.dev.example.com

cluster-2.dev.example.com

*.faas-blue.dev.example.com

*.faas-green.dev.example.com

21

Life of a Query
Knative Serving, part 1

Data Path

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node

Pod

Life of a query

Goal: Steady-state should not be substantially more
expensive than using “raw” Kubernetes.

In particular, any middle-boxes that we add need to
autoscale based on traffic demand. (And we prefer to
have fewer such middleboxes, and to have them co-
located with existing components in some way to
reduce traffic via eth0).

HTTP RouterLoadBalancer

Queue-Proxy User container

ReplicaSet

GET / HTTP/1.1

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node
Pod

Pod
Pod

Life of a query

Goal: Scale container replicas based on request rate.

Scaling based on request rate provides an earlier signal
than CPU usage and aligns well with concurrency limits.

Solution: custom autoscaler that collects request
information from queue-proxy.

HTTP RouterLoadBalancer

Knative Pod
Autoscaler

Queue-Proxy
Concurrency=1

User container

Kubernetes
apiserver

KubeletReplicaSet

Count = 3

Requests = 3

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node

Pod

Life of a query

Goal: Support bounded concurrency.

AWS Lambda runs a max of one request per process. This
means many FaaS functions aren’t written to be
threadsafe!

Solution: Add queue-proxy container to limit concurrency
of requests to the user container (optional; high
concurrency is also supported).

HTTP RouterLoadBalancer

Queue-Proxy
Concurrency: 1

User container

ReplicaSet

GET / HTTP/1.1
GET / HTTP/1.1

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node

Pod

Life of a query

Goal: Support scale-from-zero.

Be able to start the user container on demand when a
request arrives for it.

Solution: The activator component stalls the HTTP
request until a user Pod is available to handle it.

HTTP RouterLoadBalancer

Activator

Queue-Proxy User container

Kubernetes
apiserver

KubeletReplicaSet

GET / HTTP/1.1

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node

Pod

Life of a query

Goal: Support scale-to-zero.

When user containers are finished processing requests,
allow all of them to be shut down and the activator used
instead.

Solution: The Knative controller rewrites the HTTP
routing rules when scaling to count=0 to add the
Activator to the Kubernetes service.

HTTP RouterLoadBalancer

Activator

Queue-Proxy User container

Kubernetes
apiserver

ReplicaSet

Controller

Count = 0

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node
Pod

Pod

Life of a query

Goal: Support percentage rollout of new features.

Small services may only receive enough traffic to use
one or two Pods. This makes it difficult to do a good
progressive rollout.

Solution: Knative supports percentage-based traffic
assignment to Revisions of a Service.

HTTP RouterLoadBalancer

Queue-Proxy User container

ReplicaSet

Node

Pod

Queue-Proxy User container

ReplicaSet

Percent = 10

Percent = 90

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Node

Pod

Life of a query

Goal: Support multiple HTTP routers.

Initial release supported only Istio, but community
feedback indicated demand for other HTTP routers.

Solution: Implemented a custom interface for HTTP
routers that meet minimum requirements (percent
splits, header rewrite).

HTTP RouterLoadBalancer

Queue-Proxy User container

ReplicaSet

29

Life of a Service
Knative Serving, part 2

Control Plane

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Life of a Service

• Service is the top-level object that most
developers will interact with.

• It controls Route and Configuration
objects in a 1:1 relationship.

Service

Route Configuration

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:

name: cat-pictures
namespace: meow

spec:
template:

spec:
containers:
- image: meow/mix:v3

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Life of a Service

• Configuration manages the desired state of
running containers.

• It works like a “HEAD” of version control,
and creates Revisions for each change to
the Configuration.

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:

name: cat-pictures
namespace: meow

spec:
template:

spec:
containers:
- image: meow/mix:v3

Service

Revision

Revision

Revision

Route Configuration

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Life of a Service

• Route controls the distribution of traffic to
Revisions.

• Route supports percentage traffic
distribution to named revisions or to the
latest Revision.

apiVersion: serving.knative.dev/v1
kind: Route
metadata:

name: cat-pictures
namespace: meow

spec:
traffic:
- revisionName: cat-pictures-12-14-2019

percent: 90
- revisionName: cat-pictures-01-09-2020

percent: 10

Service

Revision

Revision

Revision

Route Configuration

Footer : Never change the footer text on individual slides. Change, turn on or off footer by using Data color order: Complimentary colors:

Life of a Service

• Revision represents a snapshot of the
state of a Configuration.

• Revision exists to enable rollback and
tracking changes over time.

Service

Revision

Revision

Revision

apiVersion: serving.knative.dev/v1
kind: Revision
metadata:

name: cat-pictures-b7g8d
namespace: meow

spec:
template:

spec:
containers:
- image: meow/mix:v3

Route Configuration

