Experience Report:
Multi-Cloud Serverless on Knative

Mark Wang

Evan Anderson



] SKT@@hm@)H@gy

Ratings



Why FaaS?

Ship Faster

e Scrum teams will be able to release frequently

e Scrum teams will start to own more of the technology stack

e There will be less tech debt

Transform the Culture

* Partner with application developers in defining the platform

* Allow teams to unblock themselves on platform features

S&P Global (((’ | $§§|iqnngosiogy

Ratings



2020 Strategic Initiative: 100% Bronze FaaS Certification

2018: 160+
Apps onprem

On Premises

Functions
Applications
Data
Runtimes
Container (optional)
Middleware
0/S
Virtualization
Servers (HW)
Storage

Networking

S&P Global
Ratings

2019: 100% in
Cloud

laaS

Functions
Applications
Data
Runtimes
Container (optional)
Middleware
0/S
Virtualization
Servers (HW)
Storage

Networking

CaaS

Functions
Applications
Data
Runtimes
Container (optional)
Middleware
0/S
Virtualization
Servers (HW)
Storage

Networking

PaaS

Functions
Applications
Data
Runtimes
Container (optional)
Middleware
0/S
Virtualization
Servers (HW)
Storage

Networking

2020: 100%
Bronze

FaaS

Functions
Applications
Data
Runtimes
Container (optional)
Middleware
0/S
Virtualization
Servers (HW)
Storage

Networking




FaaS Certification Roadmap

e | pezots | wam | e @ | @ | e

Learn & - -_ _
Experiment

Build
Foundation
FaaS
Accelerator()

FaaS Adoption

Application
Migration

Rati
Sgtt?n(;lSObal («’ | Teactllﬁnngoslogy



Platform Release stages (released monthly)

COE O

* Working base platform e 24x7 support * Recommended for all developers
— Kubernetes: EKS - creps - S
_ Knative * Additional platform capabilities * Additional platform capabilities
_ Istio — OIDC/OAuth — DMZ Support
— Azure DevOps — Logging & Monitoring — Eventing
— Base images — Onboarding automation — Distributed Tracing
— CI/CD pipeline automation — Spot instances
* Pilot applications only _ _ _
* Open for early adopters * Add Container-as-a-Service options
* Define model and working processes _ _ . _ _
o » Reference implementations: Java, * Additional integrations
— Open contribution model
.Net, Python, Angular — Container Security
* Initial training materials and . _ _ _ _
documentation * Improved training materials and * Reference implementations: Static
documentation Web Hosting

S&P Global
Ratings 8



FaaS 3.1 Feature Highlights

* Languages: * Logging & Monitoring:
= N ﬁ pgthon Splunk> Q Prometheus mGrGfGnG
JE;IE NeT » Distributed tracing:
* Eventing: “ Telemetry
Qﬂ Apache ° 1 1 .
% kqfka &gACTIVEMQ Authentication:
OpeniD
* Security:

oy i , _* Network: Internal and DMZ
&:’:ﬁ TWIStIOCk ‘ Open Policy Agent FDRT|FY

* Spotinstances

* Blue/Green cluster automation

S&P Global
Ratings



FaaS Platform Components

Major Components in order of operation

1. AWS EKS

1
]
1
Managed Control Plane for Kubernetes \ L .
© l  inactive__} @0 tyator L 2oivete_
1 | 1
:
1
]

i |
I 1 |
2. Kubernetes A ; AR i |
Container Orchestration e o I . i E
' |
. I : i
3. lstio i _forward | -- - ¥omoooy
Ingress Control and Request Queuing activel i E@ Autoscaler |
| G ST TTT - -=-==
. | | |
4. Knative | e S .
. I |
On-demand pod scaling and request routing, scale to zero | W | ¥ |
'-——-——--7 Pods 1 Deployment jr—---'
_ T R
Single Knative Cluster consists of: | |
1 1
e 40+ AWS components @ :L Revision |
) Tens Of thousands Iines Of YAML Source: https://istio.io/blog/2019/knative-activator-adapter/knative-activator.png

Rati
g:ctlzi)n(;lgbal ((<’ | TeacJ:UhnngoSIiogy

Privileged and confidential 10



FaaS Accelerator() (Knative)

Local Development

S&P FaaS Framework

Business Logic

Configs

Certification Pipeline

Build
Docker
Image

Run
Container
Locally

Cloud: AWS

Knative

Istio

EKS Kubernetes

Knative

Kubernetes Pod

S&P Global
Ratings

S

&

Tagged
Docker
Image

Docker Registry

Knative:

Provides FaaS capabilities on top of
Kubernetes. It is a framework/set of
extensions focusing on high-level
abstractions for common application use
cases like serving and eventing.

Local Development function code can be
tested by running the Docker image
locally in a container, as long as Knative-
specific integrations are not used. In
certain cases, deployment to a dev K8s
cluster will be needed.

Certification Pipeline will deploy Business
Logic (Function Code) as a Container
Image to Knative and eventually land on
Kubernetes such as AWS EKS

This is very portable; higher environments

will simply deploy the gold copy of the
Function artifact as Container Image

Private & Confidential 1



Demo

S&P Global Rati
Ratingso 2 ((<’ Teaclkrngosliogy



Adoption

In less than 1 year:

* 90% of the applications in scope have started or
completed Faa$S functions

e 50% of teams have written FaaS functions

S&P Global Rati
Rgttmgso 2 (((’|T:§|hnngoslogy

l

Innovators Early Early

2.5 %

Adopters Majority
13.5% 34 %

Late
Majority
34 %

Laggards
16 %

Privileged and confidential

100

75

50

25

% 21eys 1Jep

13






Serverless HTTP applications

* Knative works with applications which expose an HTTP server on a known port.

e Why HTTP:
— Ubiquitous, well-understood
— Ongoing improvements with HTTP/2, Websockets, etc

— Shares resources (IP, cert, routers) well

/7

Kubernetes supports applications which use multiple protocols and ports, and which have many scaling models.
The tradeoff is that Kubernetes requires a lot of settings even for a basic deployment.

— If we know the protocol, we can do :magic:

Knative specializes Kubernetes for stateless HTTP applications. It’s a complement to the core Kubernetes
Deployment, StatefulSet, and Job abstractions.

S&P Global (((’ | $§§|iqnngosiogy

Ratings



Serverless HTTP Applications

apiVersion: apps/vl apiVersion: vl
kind: Deployment kind: Service
metadata: metadata:
name: myapp name: myapp
spec: spec:
selector: ports:
matchLabels: - port: 80
app: myapp targetPort:
template: selector:
metadata: app: myapp
labels:
app: myapp
spec:
containers:
- image: docker.io/test/myapp
ports:

- name: http
containerPort: 8080

... less YAML, too

S&P Global
Ratings

h2c

apiVersion: serving.knative.dev/vl
kind: Service

metadata:
name: myapp
spec:
template:
spec:
containers:
- image: docker.io/test/myapp
ports:

- name: http

This also includes an autoscaler and some other
magic we’ll talk about soon!



Serverless HTTP Applications

What else do you get out of the box with Knative?
e Autoscaling (already covered)

* Automatic management of HTTP hostnames
— Map a wildcard address to your cluster, and no further need to touch DNS!

* Automatic tracking of previous states (Revisions)

— Every update to the Service’s spec creates a new Revision
— These Revisions are immutable and automatically garbage collected

e Ability to roll back and canary traffic between Revisions

— Can route traffic on a percentage basis, regardless of how many instances
— A traffic route can refer to a specific Revision, or the last Ready Revision
— Can also add tags to reach a specific Revision by a unique hostname — handy for testing

| promised some magic

Rati
gg(tlipr%l:bal (((’ | Tea;nngoslogy




Serverless HTTPS applications

* Knative Serving can be configured to automatically provision certificates for your automatically-created
hostnames.

e QOut of the box, this uses LetsEncrypt and certmanager
* You could also integrate this with your own CA

e Supports both DNS (wildcard) and HTTP certificate solvers

Requirements:
* Your serving domain must be reachable by LetsEncrypt (i.e. on the internet)

* LetsEncrypt supports about 50 certs/week/domain prefix

Rati
gg(tlipr%l:bal (((’ | Tea;nngoslogy



SSL in the real world at S&P

Cluster-specific DNS zones: *.faas-blue.dev.example.com

— Contains a wildcard record pointing at the specific cluster

Environment-specific DNS zones: *.faas. .example.com

Contains a wildcard record which points at the currently-active cluster (blue or green)
Can use DNS to perform active/active, active/passive, or weighted traffic routing

AWS Certificate Manager SSL certificates provisioned for each cluster

AWS CA provisions SSL certificates covering both the cluster-specific and environment-specific names
Certificates are automatically created during cluster build with DNS validation for cluster SANs using AWS Route53
Certificates are installed on the ingress loadbalancers

cluster-1l.dev.example.com

* ,faas-blue.dev.example.com

* ., faas.dev.example.com

* . faas-green.dev.example.com cluster-2.dev.example.com

S&P Global Rati
Rgttmgso 2 (((’|T:§|hnngoslogy

Privileged and confidential

20



5
-~

3

Knative Swinwarfj

‘
“
—
"
i
.

- ,
Data Path

“Life of a Query




Life of a query

GET / HTTP/1.1

LoadBalancer HTTP Router

Goal: Steady-state should not be substantially more
expensive than using “raw” Kubernetes.

In particular, any middle-boxes that we add need to
autoscale based on traffic demand. (And we prefer to
have fewer such middleboxes, and to have them co-
located with existing components in some way to
reduce traffic via eth0).

Rati
Sgttlzi’n(;'gbal (((’ | T:é[;wnnislogy

Queue-Proxy

User container

Pod




Life of a query

Knative Pod

Requests = 3 . Autoscaler

LoadBalancer HTTP Router

Goal: Scale container replicas based on request rate.

Scaling based on request rate provides an earlier signal
than CPU usage and aligns well with concurrency limits.

Solution: custom autoscaler that collects request
information from queue-proxy.

Sgt?ncggbal «(’ | $:§|if1nn%)8logy

Queue-Proxy

Concurrency=1

Kubernetes
apiserver

Kubelet

User container

Pod
rod
rod




Life of a query

GET / HTTP/1.1
GET / HTTP/1.1

LoadBalancer HTTP Router

Goal: Support bounded concurrency.

AWS Lambda runs a max of one request per process. This
means many Faa$S functions aren’t written to be

threadsafe! Queue-Proxy :
‘ User container
Concurrency: 1

Solution: Add queue-proxy container to limit concurrency i
of requests to the user container (optional; high
concurrency is also supported).

Sgt?n(;':bal «(’ | $ealgli1nn%)8logy



Life of a query

Kubernetes

Activator :
apiserver

GET / HTTP/1.1

LoadBalancer HTTP Router

Goal: Support scale-from-zero. Kubelet

Be able to start the user container on demand when a
request arrives for it.

Queue-Proxy User container

Solution: The activator component stalls the HTTP
request until a user Pod is available to handle it. Pod

Sgt?n(;':bal «(’ | $ealgli1nn%)8logy



Life of a query

Kubernetes
apiserver

LoadBalancer HTTP Router

Goal: Support scale-to-zero.

When user containers are finished processing requests,
allow all of them to be shut down and the activator used

instead. , Queue-Proxy User container

Solution: The Knative controller rewrites the HTTP Pod
routing rules when scaling to count=0 to add the

Activator to the Kubernetes service.

Rati
Sgtt?nc;'gbal «(’ | T:Cthn%)Slogy



Life of a query

Percent
Queue-Proxy User container

LoadBalancer HTTP Router

Percent|= 90

Goal: Support percentage rollout of new features.

Small services may only receive enough traffic to use
one or two Pods. This makes it difficult to do a good
progressive rollout.

Queue-Proxy User container

Solution: Knative supports percentage-based traffic
assignment to Revisions of a Service.

S&P Global Rati
Rg’[i N gso ° (((’ | T:Ctﬁwnnislogy



Life of a query

LoadBalancer HTTP Router

Goal: Support multiple HTTP routers.

Initial release supported only Istio, but community
feedback indicated demand for other HTTP routers.

Solution: Implemented a custom interface for HTTP
routers that meet minimum requirements (percent
splits, header rewrite).

Sgt?ncggbal «(’ | $:§|if1nn%)8logy

Queue-Proxy

User container

Pod




.
K
.
b4 .
)
. )
. ") .

Life of a
KndWWSIServi

i@ontrol Plane

-".. (R I

.

L]
. L]

. ]
N ¢ S
a e . :
]
L]




Life of a Service

» Service is the top-level object that most
developers will interact with.

* It controls Route and Configuration
objects in a 1:1 relationship.

apivVersion: serving.knative.dev/vl
kind: Configuration
metadata:
name: cat-pictures
namespace: meow
spec:
template:
spec:
containers:
- image: meow/mix:v3

S&P Global Rati
Rég;ti n gso ° (((. | T:c.,:tlhnnislogy




Life of a Service
« Configuration manages the desired state of

* |t works like a “HEAD” of version control, i

running containers.

and creates Revisions for each change to
the Configuration.

apivVersion: serving.knative.dev/vl
kind: Configuration

Configuration "
metadata:
name: cat-pictures

Revision <=
namespace: meow :
spec: - .

template: Revision < ':
|
|
|

spec:

containers:
- image: meow/mix:v3 Revision «

Rati
Sgttlzi’n(;'gbal (((’ | T:é[;wnnislogy




Life of a Service

« Route controls the distribution of traffic to
Revisions.

« Route supports percentage traffic
distribution to named revisions or to the
latest Revision.

Configuration

apivVersion: serving.knative.dev/vl
kind: Route

metadata: Spenfief y
name: cat-pictures evision

namespace: meow

|

|

spec: |
traffic: *1

I

|

|

-
1
1
1
1
1
1
|

- revisionName: cat-pictures-12-14-2019

percent: 90
- revisionName: cat-pictures-01-09-2020 Revision -
percent: 10

S&P Global Rating
Rati ngso . (((’ T:cgnnoslogy




Life of a Service

» Revision represents a snapshot of the
state of a Configuration.

e Revision exists to enable rollback and
tracking changes over time.

Configuration

apivVersion: serving.knative.dev/vl
kind: Revision

metadata: Spenfief y
name: cat-pictures-b7g8d evision

namespace: meow

|

l

spec: |
template: *1

|

|

|

-
1
1
1
1
1
1
|

spec:

containers:
- image: meow/mix:v3 Revision «

Rati
Sgttlzi’n(;'gbal (((’ | T:é[;wnnislogy




