@ LENSES S

Presenters

Andrew Stevenson Fran Perez
CTO, Lenses.io Backend Engineer, Lenses.io

Open-Source tooling for Apache Kafka & Kubernetes

iﬁ%r,

docker
>1 Million >5000
Downloads Github Stars

Commercial offering for Kafka & Kubernetes

Ssas aﬁ%\as DAIMLER (@Piagtika @oobyon Namely” HoMATSU

JCDecaux Sainsbury’s PostFinance (s CISION $¥RBS telenet ub;‘Zqo

’ < .
NUVO Aincco » X Quiqup A4 p as ARTICLE. Autoliv
Your Agriculture Company i\}l e —

GENERALI

9 workable

D CREDIMI

(®)

Aduno Gruppe
the smart way to pay

&3 OC.TANNER

SCHULER 71

We Support Strategic Real-time Data Projects

babylon

BABYLON HEALTH
Delivering affordable healthcare

to everyone on earth through Al-
driven chatbots

Affordable Healthcare

VORTEXA
Tracks the movement of over $7

trillion worth of seabourne oil-
based products in real-time

Analytics

OAduno Gruppe Q \
the smart way to pay

I

Increasing customer
engagement in their marketing
campaigns

ADUNO GRUPPE

Customer Engagement

Lenses.io Mission

Reduce the pain, cost & compl
modern data platforms.

lenses.io/start

All-in-one Kafka + Lenses.io developer Docker box

Port Port Port Port Port Port
8083 2181 9092 8081 9200 3030
<4k # "o

Q .'.
Ry

2

Lenses.io Box Container

github.com/lensesio

Open-Source tooling & connectors

Q
el launchpass.com/lensesio

Agenda

~

Overview of a DataOps streaming platform

Demo our deployment framework that takes the Ops out of
DataOps

How we built it and how it scales to any type of application

%

Data platform

Stream Processing
Application

©

§€ Apache Kafka Platform

(0

What is Kafka?

distributed commit log

Distributed commit log?

Topic "topicName" Consumer

» PR Group
il 0 8 NI I R |
| |
: ConsumerO':
. T | |
S KK I EN KN ES I EA KXk ; :
|
3 : Consumer 1 | i
Partition2 | O | 1 | 2 | 3 | 4| 5| 6 7|8|9|10 1 : :
| |
s : Consumer2| i
Partiton3 | O | 1 | 2 | 3 | 4|56 7189]|10]|MN 121 D 4

*Oreilly - Kafka definitive guide

Q@ LENSES
Self-Service Data Discovery Data Processing Monitoring
Security
o
§€ Your data platform %

°
ed

06
{({|=x

Any Kafka Any Kubernetes

If not kafka, what are we deploying?

Data Entities Data Alerting Rules
Data Policies Data Applications

Any Docker & Config

Data intensive apps d-k*
with Lenses o

API | Ul | GitOps

Q LENSES

Connection
Secret Management Any Backing Service

Application

Deploy

Any Kubernetes Kafka Connect

Streaming SQL for
Kubernetes

Secret Management

INSERT INTO electricity_events_avg
SELECT STREAM customer_id ,
AVG (KW) AS KW
FROM electricity events
WINDOW BY HOP 10m, 5m
GROUP BY customer_id

API | Ul | GitOps

Q LENSES

Build App
Docker & Config

Consumer

Connection
Any Kafka

Producer

Stream Processing App

Deploy Container

Any Kubernetes

LA

3 minutes demo of deploying a streaming
app

What's special about real-time apps?

~" Unbounded data
v Many sources
v React to data

v State

= > E === === e Sere

| Vault

p |
Java

Traditional Self-Contained Microservice

v Inputs/Outputs
v Data access
v Complex security models

v Connection management

Stream Processing Platform

The Twelve-Factor App

Adam Wiggins

Introduction

In the modern era, software is commonly delivered
alled web apps, or software-as-a-service.
rappisan logy for building

© Use declarative formats for setup automation,
to minimize time and cost for new developers
joining the project;

© Have a clean contract with the underlying

offering maximum _porta-
ation environments;

o Are suitable for deployment on modern cloud
platforms, obviating the need for servers and
systems administration;

o Minimize divergence between dev
and production, enabling continuous deploy-
S

o And can scale up without si
10 tooling, architecture, development

I. Codebase

One codebase tracked in revi-
sion control, many deploys

A twelve-factor app is always tracked in a version
control system, such as Git, Mercurial, or Subver-
sion. A copy of the revision tracking database is
known as a code repository, often shortened to code

repo or just repo.

A codebase is any single repo (in a centralized revi
sion control system like Subversion), or any
repos who share a root commit (in a decentrali;

on control system like G

Platform as a Service

What does it mean

New challenges

One codebase maps to many deploys

There is always a one-to-one correlation between

the codebase and the app

o If there are multiple codebast not an app
- it's a distributed system. Each component in
a distributed system is an app, and each can
individually comply with twelve-factor.

o Multiple apps sharing the same code is a viola-

What should we care about

12 Factor apps manifest

Scale is expressed as running processes, workload
diversity is expressed as pro

In the twelve-factor app, processes are a first
class citizen. Processes in the twelve-factor app
take strong cues from the process model for
running service daemons. Using this model, the
developer can architect their app to handle diverse

workloads by assigning each type of work to a
process type. For example, HTTP requests may be
handled by a web process, and long-running back-
ground tasks handled by a worker process.

This does not exclude individual processes from
handling their own internal multiplexing, via
threads inside the runtime VM, or the
async/evented model found in tools such as Event-
Machine, Twisted, or Node.js. But an individual VM
can only grow so large (vertical scale), so the appli-
cation must also be able to span multiple processes
running on multiple physical machines.

The process model truly shines when it comes time

cale out. The share-nothing, horizontally parti-
tionable nature of twelve-factor app pr
means that adding more concurrency is a simple
and reliable operation. The array of process types
and number of processes of each type is known as
the process formation.

A

J N
-0

Dependencies

Codebase

-

Port Binding

L1l

Concurrency

0

Disposability

=

Config

12 Factor Apps
Principles

Dev/Prbd Parity

? a

Backing Services

=

Logs

o

Build/Release/Run

Processes

Admin Processes

How Lenses approaches it

Connections Secret Providers Applications

Templating systems <> Streaming apps

Any Docker & Config

Q LENSES

Common concerns for any app:

Input params App image to run

Data sources Scale l

Data sinks Liveness probe

= O

Application

Deploy

1 1
v v

Any Kubernetes Kafka Connect

Any Docker & Config

izl
docker

Secret Providers

API | Ul | GitOps

Q LENSES

Connection
Secret Manage

@ Any Backing Service

Application

Any Kubernetes Kafka Connect

Secret Providers

Secret providers. Who (where in the end) A
is going to keep secrets e.g.: Login and write .
/ Redis Devl || MySQL Devl
Username Username
V LenSGS Itself Password Password
v AzureKeyVault
V HaSthO rpvaU |t 2. Login to KeyVault 3. Fetch Redis Dev 1
V 1. Inject Azure Credentials keys and values
App

SECRET_KEY_NAME=[PROVIDER]:[VAULT_URL]:[LOOKUP_KEY]:mounted:type

Any Docker & Config

Connections 4

docker

API | Ul | GitOps

Q LENSES

Connection

Secret Management ny Backing Service

Application

Deploy

Any Kubernetes Kafka Connect

Prod Dev Prod Staging Dev
Env Env Env Env Env

Security & Governance

Connections

Connection descriptor. Properties needed
to connect to a system e.g.:

v
Kafka brOke_rS . Kafka Connection Redis Connection —— Data catalog
~ DB connection string <+— RBAC
Connection Connection
Template Template

*Connections are referenced by Names
SQL Application

App
Template

Kafka Connection

Template

bootstrapServer

protocol

keyPassword

keystorePassword

keystore

(KafkaDev

servicePrincipal: Lenses
labels: env=development

L J

(KafkaStaging

servicePrincipal: AzureKV
labels: env=development

\ J

(KafkaProd

servicePrincipal: AzureKV
labels: env=development

KafkaDev.bootstrapServer=localhost:9092
KafkaDev.protocol=plaintext
KafkaDev.keyPassword=password1

KafkaDev.keystorePassword=password2

KafkaStaging.bootstrapServer=kafka.staging:9092

KafkaProd.bootstrapServer=kafka.prod:9092

KafkaProd.protocol=SASL_SSL

KafkaStaging.protocol=SASL_PLAINTEXT

Applications

Secret Management

Any Docker & Config

iﬁ%r,

docker

API | Ul | GitOps

Q LENSES

Any Backing Service

Application

Any Kubernetes Kafka Connect

name: SQLProcessor
author: Lenses.io
appLanguage: Scala
enabled: true
description: SQL Processor.
templateVersion: 1
createdBy: lenses
category: Application
configurationKeys:
- key: kafka.bootstrap.servers
mounted: false
required: true
connectionReference:
templateName: Kafka
propertyKey: kafkaBootstrapServers
category: Reference
createdBy: lenses
displayName: Kafka Bootstrap Servers
placeholder: PLAINTEXT://hostl:portl,SSL://host2:port2
description: Comma separated list of protocol://host:port to use for initial connection
to Kafkal]

KafkaDev R
servicePrincipal: AzureKV
a Application Kafka Connection labels: env=development
QQ Template Template
_ W,
Reference
app.bootstrap.servers _—> bootstrapServer KafkaDev.bootstrapServer=localhost:9092
S — KafkaStaging)
. G . - —
app.security.protocol protocol servicePrincipal: AzureKV KafkaStaging.bootstrapServer=kafka.staging:9092
labels: env=development
app.ssl.key.password % keyPassword KafkaProd.bootstrapServer=kafka.prod:9092
.- . J
app.ssl.keystore.password — ==, keystorePassword KafkaDev.protocol=plaintext
KafkaProd)
l.keystore.location % keystore KafkaDev.keyPassword=password1
app.ssi. ' servicePrincipal: AzureKV .
labels: env=development
app.sql KafkaDev.keystorePassword=password2
o J
(SQLProcessor w
;’se’s'"ngtELECT . sql: SELECT *
PP-Sql: app.bootstrap.servers=AzureKV:vaultUrl:KafkaDev.bootstrapServer:nonMounted:string

kafkaConnection: KafkaDev

app.security.protocol=AzureKV:vaultUrl:KafkaDev.protocol:nonMounted:string

Any Docker & Config

izl
docker

Deployments

API | Ul | GitOps

Q LENSES

Connection
Secret Management Any Backing Service

Deploy

M"

An

Deployments

Deployment descriptor. Properties needed to deploy
an application e.g.:

st O LENSES

Number of runners
Namespace (kubernetes) Deploy App

Shutdown hook

Liveness probe

Let's cook

<

Deployment
Template

Application
Template

Kafka Connection
Template

oo e

DeployableUnit
Template (Ephemeral)

———————

(

Kafka Connection ~ }—-=------

(

Staging
Kafka Connection]— ________________ ﬁ

(

Kafka Connection]- ________

SQL = insert into

@ Input Parameters

Kafka_Prod

Connection

e

o

Deployable
Unit
Y

Kafka

Name =

Fetch Details for Kafka
Connection Name =
Kafka_Prod

Secret
Provider

Scalability - Can be for any app not just SQL processors

Kafka Connection SQL Application
S3 Connection Scala Application
Hive Connection Python Application
Snowflake Connection Node.js Application

Connection App
Template Template

Observability

+ We (Lenses) watch what's happening
with the apps we deployed

~ We can also expose through our
templates ports where the application
is already emitting more biz specific
metrics

AppDeploy

K8s Manager KC Manager
K8s K Connect
K8s Watcher K8s Watcher

Events

ErrorEvents

EventHandler

Architecture Overview (draft, needs modifications)

! !

— K8s Kafka Connect

. K8s Watcher KC Watcher ... Watcher
Persistence

Run command on Target

. . Output ch
Deployer Component Applications State

Registration

Provided & expected props

Q LENSES

Kubernetes Write side (draft, needs modifications.)

Deployment

Dev Experience

+ Import / Export applications v Governance & security

(enable GitOps) v
Streaming Apps marketplace
~/ Move apps without worrying ~/ Enable moving apps around
about knowing backend service environments by running
Lenses-cli commands (or clicks
~ Promotion workflows eg. from if you are using our Ul)

Dev -> Prod

lenses.io/start

All-in-one Kafka + Lenses.io developer Docker box

Port Port Port Port Port Port
8083 2181 9092 8081 9200 3030
<4k # "o

Q .'.
Ry

2

Lenses.io Box Container

github.com/lensesio

Open-Source tooling & connectors

Q
el launchpass.com/lensesio

@ LENSES S

