
Public © confidential 1

Using KubeVirt in

Telcos

Abhinivesh Jain

Distinguished Member of Technical Staff

23-Sep-2020

Public © confidential 2

About Me

• Author, Speaker and Blogger

• Open Source “Contributor”

• Working as Distinguished Member of Technical Staff

(DMTS)- Senior Member in CTO-5G Team in Wipro

@AbhiniveshJain

http://abhiniveshjain.blogspot.in/

/abhiniveshjain

http://in.linkedin.com/in/nassyambasha/

Public © confidential 3

KubeVirt overview

1

Agenda

2

3

KubeVirt in Action4

Setup steps5

Lesson learnt6

Key Takeaways7KubeVirt role in Telco

Current Challenges in Telco

Public © confidential 4

Current

Challenges

Public © confidential 5

Legacy Apps are here to stay!!!

Legacy Apps that can’t be

containerized because-

• No source code

• Not architected for

Containers

• Uses Telco vendor

proprietary OS

Non-replaceable Legacy Apps

Public © confidential 6

VNFs are here to stay!!!

Longer cycle of VNF to CNF

conversion

CNF is still evolving to match Telco needs

Only VNFs in 4.5G (LTE Advanced)

4.5G and NSA-5G will co-exist for long time

Kubernetes is still adapting to Telco specific

requirement

Public

No Single hosting platform for VNF & CNF

VNF

OpenStack

VNF CNF

Kubernetes

Hardware

VNF

Kubernetes

CNF

• Use of Openstack for

hosting VNFs

• Separate platforms for

VM and container

based workloads

• Use of Kubernetes for

hosting CNFs

• Separate platforms for

VM and container

based workloads

• Use of Kubernetes

for hosting VNFs

and CNFs both

• Single platform to

manage

Openstack

PNF VNF CNF

Can Kubernetes host both VNFs and CNFs?

• Appliance based

Network functions

• Difficult to Scale

• Difficult to manage

Public

No Single Multi access Edge computing (MEC) platform

Can we have just one MEC platform that will satisfy both the needs?

MEC Platforms require VNFs and CNFs hosting capabilities

MEC platform require to host third party apps(VM/Container)

No Native support for VM hosting in Kubernetes

Fixing above requires 2 sets of MEC platforms

• Openstack based

• Kubernetes based

This increases the cost and complexity of MEC platform management

Public © confidential 9

KubeVirt

Overview

Public

KubeVirt

Helps in marrying VM and

Container world

CNCF Sandbox project

Allows us to run VM inside a POD

Allows you to manage VM

similar to POD

Public © confidential 11

Eventual Containerization

Cloud Native adoption is

accelerating

Eventual containerization

(EC) enables faster

adoption of Cloud Native

With EC, it is possible to remove VM

hosting platform even before 100%

container adoption

Public © confidential 12

KubeVirt Role

in Telcos

Public

KubeVirt Role in Telcos

Single Compute

platform for VNFs

and CNFs

Single MEC

platform for VM

based and

Container based

MEC Apps

Uniform

development

experience

Reusing

Kubernetes

skills

Easier management

Public © confidential 14

KubeVirt in

Action

© confidential 15

Case Study

• Openshift 4.2 cluster is up and running

• Windows 2012 ISO image

• Internet access to download CDI, KubeVirt,

Virtctl, remote viewer

• 25G PVC for hard drive where windows will

be installed

Objective here is to run Windows 2012 ISO based
image on Kubernetes platform based on Openshift
4.2. This is to show how VM based workload can run
inside Kubernetes.

Windows VM hosting is more complex than Linux

Prerequisites

Public

High Level Steps

1. Configure CDI

2. Configure KubeVirt

3. Image upload using Virtctl

4. Create PV for hardisk that will hold the windows installation

5. Create Windows VM using sample yaml file

6. Start VM using virtctl

7. Connect to VM using VNC

8. Install Windows

Public

Configure CDI

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

[root@localhost win2012iso]# export VERSION=$(curl -s https://github.com/kubevirt/containerized-

data-importer/releases/latest | grep -o "v[0-9]\.[0-9]*\.[0-9]*")

[root@localhost win2012iso]# echo $VERSION

v1.22.0

[root@localhost win2012iso]# oc create -f https://github.com/kubevirt/containerized-data-

importer/releases/download/$VERSION/cdi-operator.yaml

namespace/cdi created

customresourcedefinition.apiextensions.k8s.io/cdis.cdi.kubevirt.io created

clusterrole.rbac.authorization.k8s.io/cdi-operator-cluster created

clusterrolebinding.rbac.authorization.k8s.io/cdi-operator created

serviceaccount/cdi-operator created

role.rbac.authorization.k8s.io/cdi-operator created

rolebinding.rbac.authorization.k8s.io/cdi-operator created

deployment.apps/cdi-operator created

configmap/cdi-operator-leader-election-helper created

[root@localhost win2012iso]# oc create -f https://github.com/kubevirt/containerized-data-

importer/releases/download/$VERSION/cdi-cr.yaml

cdi.cdi.kubevirt.io/cdi created

Public

Configure Kubevirt

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Choose appropriate version, V0.26.0 is given as example.

oc create namespace kubevirt

oc apply -f https://github.com/kubevirt/kubevirt/releases/download/v0.26.0/kubevirt-operator.yaml

oc apply -f https://github.com/kubevirt/kubevirt/releases/download/v0.26.0/kubevirt-cr.yaml

Apply kubevirt scc for openshift

If you are having rook-ceph then apply

https://github.com/rook/rook/blob/master/cluster/examples/kubernetes/ceph/upgrade-from-v1.2-

apply.yaml

https://github.com/kubevirt/kubevirt/releases/download/v0.26.0/kubevirt-operator.yaml
https://github.com/kubevirt/kubevirt/releases/download/v0.26.0/kubevirt-cr.yaml
https://github.com/rook/rook/blob/master/cluster/examples/kubernetes/ceph/upgrade-from-v1.2-apply.yaml

Public

Image upload

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Install virtctl using below commands. Once again, take latest version and it should be similar to

KubeVirt.

curl -L -o virtctl https://github.com/kubevirt/kubevirt/releases/download/v0.26.0/virtctl-

v0.26.0-linux-amd64

chmod +x virtctl

Now upload this image using below command. Give uploadproxy IP that you get from oc get svc –n

kubevirt command output.

[root@mycluster-master-0 tmp]# ./virtctl image-upload --uploadproxy-url=https://x.x.x.x:443 --pvc-

name=iso-win2k12-pvc --access-mode=ReadOnlyMany --pvc-size=25Gi --image-

path=/tmp/Win2k12R2.ISO --insecure --wait-secs=300

Public

Image upload…Cont’d

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Upload command output will look like below.

This command will create 2 PVCs, win2k12-pvc and win2k12-pvc-scratch of same size (25Gi) as

given in below command. Scratch PVC is temporary and it will be deleted automatically after

successful image upload.

[root@mycluster-master-0 tmp]# ./virtctl image-upload --uploadproxy-url=https://x.x.x.x:443 --pvc-

name=win2k12-pvc --access-mode=ReadOnlyMany --pvc-size=25Gi --image-

path=/tmp/Win2k12R2.ISO --insecure --wait-secs=300

Using existing PVC rook-ceph/iso-win2k12-pvc

Waiting for PVC iso-win2k12-pvc upload pod to be ready...

Pod now ready

Uploading data to https://x.x.x.x:443

4.17 GiB / 4.17 GiB [==]

100.00% 1m13s

Uploading data completed successfully, waiting for processing to complete, you can hit ctrl-c

without interrupting the progress

Processing completed successfully

Uploading /tmp/Win2k12R2.ISO completed successfully

Public

Creat PV

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Put below in one .yaml file and apply it using oc apply –f <filename>

Remember to update storageClassName to appropriate value. You can update this based on output

of oc get storageclass output.

rook-filesystem should be used if rook-ceph is in place.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: windowsdrive

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 25Gi

storageClassName: rook-filesystem

Public

Create Windows VM

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Now, it is time to create VM using the ISO image that was uploaded earlier. Before this step, you

need to attach virtio driver as a cdrom. You can do this using podman/docker by giving below

command.

[root@mycluster-master-0 tmp]# podman pull kubevirt/virtio-container-disk

Trying to pull docker.io/kubevirt/virtio-container-disk...Getting image source signatures

Copying blob 65ceadabbfb7 done

Copying config d5ffba0407 done

Writing manifest to image destination

Storing signatures

d5ffba0407e8874891f00ec44168d2d5fc7ba4968a39c22c725a2946c226d2ee

Verify it using podman images command. Once above is done, you are good to run create vm yaml

file. Sample is given below.

[root@mycluster-master-0 tmp]# oc create –f vmi_windows.yaml

virtualmachineinstance.kubevirt.io/vmi-windows created

Public

Start Windows VM

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

By Default VM is in shutdown mode so first thing you need to do is to start it.

[root@mycluster-master-0 tmp]# oc get vms

NAME AGE RUNNING VOLUME

samplevm 3m false

[root@mycluster-master-0 tmp]# ./virtctl start vm samplevm

VM samplevm was scheduled to start

[root@mycluster-master-0 tmp]# oc get vm

NAME AGE RUNNING VOLUME

samplevm 76s true

This VM will create the VMI and you will see the VMI running in few minutes.

[root@mycluster-master-0 tmp]# oc get vmi

NAME AGE PHASE IP NODENAME

samplevm 5m Running 10.x.x.x worker-1

Public

Connect to Windows VM

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Now it is time to connect to VM using VNC. This command needs to be executed from a host which

is capable of showing display. You can use MobaXTerm or any other such software.

[root@localhost tmp]# ./virtctl vnc samplevm

If it fails with error like remote_viewer not present then install remote_viewer using below

command. If not then you will see windows installation screen as shown below.

[root@localhost tmp]# yum install virt-viewer

Public

Connect to Windows VM

1. Configure CDI

2. Configure

KubeVirt

3. Image upload

using Virtctl

4. Create PV for

hardisk that will

hold the

windows

installation

5. Create

Windows VM

using sample

yaml file

6. Start VM using

virtctl

7. Connect to VM

using VNC

8. Install Windows

Complete the windows installation by following the below Video.

https://kubevirt.io/assets/2020-02-14-KubeVirt-

installing_Microsoft_Windows_from_an_iso/kubevirt_install_windows.mp4

Remember your mouse pointer won’t work for most of the screens so you need to use keys like-

Tab(to toggle between options), spacebar(for checkbox selection), enter(for selection), right arrow

key(for expansion) etc.

After successful installation, you will see screen similar to below.

Congratulations !!! Your

windows VM is up and

running now.

https://kubevirt.io/assets/2020-02-14-KubeVirt-installing_Microsoft_Windows_from_an_iso/kubevirt_install_windows.mp4

Public © confidential 26

Lesson Learnt

Public

Lesson Learnt

Putting VM in a POD

results in nested

virtualization hence it

has some

performance

overheads.

Currently several

features are work in

progress, like- you

can’t increase

CPU/Memory on the

fly.

Always Run virtctl

image upload from

master node.

Always use latest

version of KubeVirt for

client and server

Public © confidential 28

Common

Challenges

Public © confidential 29

Common Challenges

Rook-ceph permission issue because of this

image was not getting uploaded.

Kubevirt bug related to VNC due to which vnc

connect to windows machine wasn’t working.

Upgrading Kubevirt helped in fixing this.

Sometimes Openshift cluster operator

“authentication” gets degraded, due to

which “no route to host” error comes.

Public © confidential 30

Key

Takeaways

Public

Key Takeaways

KubeVirt is maturing at very fast pace hence some

issues are expected.

KubeVirt Slack channel is your best friend.

Refer to

https://github.com/kubevirt/kubevirt/tree/master/examples

https://github.com/kubevirt/kubevirt/tree/master/examples

Public

Is KubeVirt Telco Ready?

Feature Supported by KubeVirt

Huge Page support Yes

SR-IOV support Yes

CPU pinning, NUMA support Yes

Multi Interface support Yes

Live Migration Conditional

Hot-plug No

Fencing (to handle node failures) Partial

ARM64 support No

GPU and FPGA No

Public © confidential 33

Questions?

Public

Appendix

Public © confidential 35

Kubevirt_scc.yaml

allowHostDirVolumePlugin: true

allowHostIPC: true

allowHostNetwork: true

allowHostPID: true

allowHostPorts: true

allowPrivilegeEscalation: true

allowPrivilegedContainer: true

allowedCapabilities:

- '*'

allowedUnsafeSysctls:

- '*'

apiVersion: security.openshift.io/v1

defaultAddCapabilities: []

fsGroup:

type: RunAsAny

groups:

- system:cluster-admins

- system:nodes

- system:masters

kind: SecurityContextConstraints

metadata:

name: privileged

priority: 10

readOnlyRootFilesystem: false

requiredDropCapabilities: []

runAsUser:

type: RunAsAny

seLinuxContext:

type: RunAsAny

seccompProfiles:

- '*'

supplementalGroups:

type: RunAsAny

users:

- system:admin

- system:serviceaccount:openshift-infra:build-controller

- system:serviceaccount:kubevirt:kubevirt-operator

- system:serviceaccount:kubevirt:kubevirt-handler

- system:serviceaccount:kubevirt:kubevirt-apiserver

- system:serviceaccount:kubevirt:kubevirt-controller

volumes:

- '*'

Public © confidential 36

vmi_windows.yaml

apiVersion: kubevirt.io/v1alpha3

kind: VirtualMachine

metadata:

name: samplevm

spec:

running: false

template:

metadata:

labels:

kubevirt.io/domain: samplevm

spec:

domain:

cpu:

cores: 4

devices:

disks:

- bootOrder: 1

cdrom:

bus: sata

name: cdromiso

- disk:

bus: virtio

name: harddrive

- cdrom:

bus: sata

name: virtiocontainerdisk

machine:

type: q35

resources:

requests:

memory: 8G

volumes:

- name: cdromiso

persistentVolumeClaim:

claimName: win2k12-pvc

- name: harddrive

persistentVolumeClaim:

claimName: windowsdrive

- containerDisk:

image: kubevirt/virtio-container-disk

name: virtiocontainerdisk

Public © confidential 37

Wipro today

IT Services Revenue

in FY 2019-20*

Active

global clients*

Employee

Count*

Countries with

Employee presence*

$8.2Bn 1074 60182,886

*Figures based on FY 2019-20 for Global IT Services business.

Public

Thanks

