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Epsagon

An automated & agentless Observability solution, built for microservices in any cloud
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What we’ll discuss today

- Monitoring and Logging
.- Observability

- Distributed Tracing
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Why monitoring?

Make sure our business works
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What should we monitor?

- 4 golden signals from Google’s
SRE book

- Latency

. Traffic

. Errors

. Saturation

"% epsagon
@ranrib



https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/

Old school monitoring

.- Agent based

BUSINESS LOGIC

X Y

MODULE
r 4

- Collects only host data "I'JI

. Collects only metrics
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Troubleshooting

We need more debug data -> logs
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Old school logging

.- Agent based oo

BUSINESS LOGIC

MODULE MODULE
X Y

- Dumps locally or remotely

- Collects only logged data
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Fast-Growing Market: Cloud + Microservices

Annual revenue of Amazon Web Services from 2013 to 2018 (in million
U.S. dollars)
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The Rise of Microservices on the Cloud

Monolithic Architecture Microservice Architecture
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Extremely hard to monitor and troubleshoot!
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Challenges for Engineering and DevOps

. Troubleshooting

Are basic logs and metrics the right tool for highly
distributed applications?

- Monitoring
“Is my application working properly”?

. Development

I’m not sure what’s currently running in production.
How can | build new services?

.
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The Three Pillars of Observability

Metrics
Aggregatable

Tracing

Request scopey
Logging

Event
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Monitoring best practices

.- Aggregate all metrics into a unified dashboard
. Define your critical metrics (thresholds)

. Use custom business metrics
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Monitoring best practices

- Monitor application metrics:

- Avg. duration of calls to an HTTP API

- Minimum number of calls to a message queue
. Number of 500/400 errors
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Logging best practices

- Print out JSONed logs with metadata (service
name, stage, etc.)

. Automate the process of logging

- Index the fields you’re are using
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Something is still missing

. How do we correlate between metrics
and logs

. How do we correlate between data in
different services
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Distributed tracing

“A trace tells the story of a transaction or
workflow as it propagates through a
distributed system.”

"% epsagon
@ranrib




Distributed tracing

U

- Generating traces \ OPENTRACING

"OpenTeIemetry

-5

- Ingestion and client
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Generating traces

Instrument every call (AWS-SDK, http,
postgres, Spring, Flask, Express, ...)

Create a span for every request and response
Add context to every span

Inject and Extract IDs in relevant calls
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Ingestion and client

Ingestion according to our scale (millions?
billions?)

Index context and tags for easy search
Visualize traces (timeline, graph)

Set alerts
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Jaeger Ul Dependencies Search

v frontend: HTTP GET /dispatch View Options. ~

Trace Start: April 12,2017 9:12 AM Duration: 704.531ms Services: 6 Depth: 5 Total Spans: 50

Span Name Timeline 176.13ms 352.27ms 528.4ms 204.53ms
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Tagging traces

Adding tags for search and aggregations

ldentifiers — user _id
Flow control — event_type
Business metrics — items_in_cart
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Tracing with payload

- Search an event according to:

. user_id (from HTTP headers)
- key in NoSQL
- Response payload from HTTP call
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Tracing as a glue

. trace -> logs

« trace <-> environment
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Best practices for observability

Automted setup and zero
maintenance

Support any environment (K8s,

cloud, Faa$)

Connects every request in a
transaction

Search and analyze your data
Helps to quickly pinpoint

problems
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The journey to observability

ldentify your business goals and architecture model
Determine your approach: DIY or managed

Trial observability solutions

Make sure the new service integrates to your
ecosystem

Evaluate the benefit and influence decision-makers
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Summary

- Modern applications requires more than just
monitoring

- Distributed tracing becomes a crucial component
in such environments

« Stop implementing your own solutions unless
heeded
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