o
=
o
©
C
©
=

Observability

Modern

N

ions

Applicat

Ran Ribenzaft

@ranrib

> whoami

)
CTO @ Epsagon ‘*

—— aWws ——

AWS Serverless Hero HEI;OES

R — Looking for whales in Hawaii w?

. ’ @ranrib

epsagon
@ranrib

Epsagon

An automated & agentless Observability solution, built for microservices in any cloud

" epsagon
@ranrib

What we’ll discuss today

- Monitoring and Logging
.- Observability

- Distributed Tracing

epsagon
@ranrib

Why monitoring?

Make sure our business works

" epsagon
@ranrib

What should we monitor?

- 4 golden signals from Google’s
SRE book

- Latency

. Traffic

. Errors

. Saturation

"% epsagon
@ranrib

https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/

Old school monitoring

.- Agent based

BUSINESS LOGIC

X Y

MODULE
r 4

- Collects only host data "I'JI

. Collects only metrics

" epsagon
@ranrib

Troubleshooting

We need more debug data -> logs

% epsagon
@ranrib

Old school logging

.- Agent based oo

BUSINESS LOGIC

MODULE MODULE
X Y

- Dumps locally or remotely

- Collects only logged data

‘epsagon
@ranrib

epsagon

Fast forward into the future

Fast-Growing Market: Cloud + Microservices

Annual revenue of Amazon Web Services from 2013 to 2018 (in million
U.S. dollars)

30 000
Containerization timeline
25655
25 000
50
20 000 20%
of companies
2 have containers
E 15000 deployed 50%
» " of companies
2 10000 Docker havgeclggtyaeugers
20 containerization :
S 000 debuted /
(1]
2013 2014 2015 2016 2017 2018 0 5
2013 2014 2015 2016 2017 2018 2019 2020
?OU'L'! l.:ddlhonal Inlw ation

@ranrib

The Rise of Microservices on the Cloud

Monolithic Architecture Microservice Architecture
- - "F———\"-\ ,"f—l\ \
o o Q) (®)
P — - —
, \ / \
g N el R ‘ T ’ g ? “_?L/*—* ! » n/,>—> { \g ,
+)) . Microservice ’—/ \—‘ Microservice < } ‘ -
S B o ® - =@ (e
ooooooooooo icroservice Microservice = \amg/ wao
3 ’ ‘ ‘ ’ »"E\‘-\
\
Host-based Host-based R Abstracted host
Monolithic Distributed Highly distributed

Extremely hard to monitor and troubleshoot!

"% epsagon
@ranrib

Challenges for Engineering and DevOps

. Troubleshooting

Are basic logs and metrics the right tool for highly
distributed applications?

- Monitoring
“Is my application working properly”?

. Development

I’m not sure what’s currently running in production.
How can | build new services?

.

epsagon
@ranrib

The Three Pillars of Observability

Metrics
Aggregatable

Tracing

Request scopey
Logging

Event

" epsagon
@ranrib

Monitoring best practices

.- Aggregate all metrics into a unified dashboard
. Define your critical metrics (thresholds)

. Use custom business metrics

epsagon
@ranrib

Monitoring best practices

- Monitor application metrics:

- Avg. duration of calls to an HTTP API

- Minimum number of calls to a message queue
. Number of 500/400 errors

epsagon
@ranrib

Logging best practices

- Print out JSONed logs with metadata (service
name, stage, etc.)

. Automate the process of logging

- Index the fields you’re are using

epsagon
@ranrib

Something is still missing

. How do we correlate between metrics
and logs

. How do we correlate between data in
different services

epsagon
@ranrib

epsagon

Distributed tracing

Distributed tracing

“A trace tells the story of a transaction or
workflow as it propagates through a
distributed system.”

"% epsagon
@ranrib

Distributed tracing

U

- Generating traces \ OPENTRACING

"OpenTeIemetry

-5

- Ingestion and client

" epsagon
@ranrib

Generating traces

Instrument every call (AWS-SDK, http,
postgres, Spring, Flask, Express, ...)

Create a span for every request and response
Add context to every span

Inject and Extract IDs in relevant calls

epsagon
@ranrib

Ingestion and client

Ingestion according to our scale (millions?
billions?)

Index context and tags for easy search
Visualize traces (timeline, graph)

Set alerts

epsagon
@ranrib

Jaeger Ul Dependencies Search

v frontend: HTTP GET /dispatch View Options. ~

Trace Start: April 12,2017 9:12 AM Duration: 704.531ms Services: 6 Depth: 5 Total Spans: 50

Span Name Timeline 176.13ms 352.27ms 528.4ms 204.53ms

= | frontend

| frontend
8 | frontend
& | redis

driver

redis

redis

redis

redis

redis

redis

redis

redis

redis

redis

redis

redis
frontend
| frontend
frontend
frontend
| frontend
| frontend
| frontend
frontend
| frontend
| frontend

coocoOCOoOO00

Tagging traces

Adding tags for search and aggregations

ldentifiers — user _id
Flow control — event_type
Business metrics — items_in_cart

epsagon
@ranrib

Tracing with payload

- Search an event according to:

. user_id (from HTTP headers)
- key in NoSQL
- Response payload from HTTP call

"% epsagon
@ranrib

Tracing as a glue

. trace -> logs

« trace <-> environment

‘epsagon
@ranrib

epsagon

Best Practices for Observabili

Best practices for observability

Automted setup and zero
maintenance

Support any environment (K8s,

cloud, Faa$)

Connects every request in a
transaction

Search and analyze your data
Helps to quickly pinpoint

problems

epsagon

0.24 calls / sec 0.22 calls / sac
e Py —— b
gems T8ms

Jorder OrdersService queuing.retail_site.new_orders
239ms ECS/Spring Web Kafka

0.22 cajis / sec
79ms

8k

item-stock queuing.retail_site.néw_orders consumer
DynamoDB ECSlJava

0.16 calls / sec
ms

Q-

api.stripe.com receipt- sender productlon send "?taj"snggeceip’s
Stripe

The journey to observability

ldentify your business goals and architecture model
Determine your approach: DIY or managed

Trial observability solutions

Make sure the new service integrates to your
ecosystem

Evaluate the benefit and influence decision-makers

epsagon
@ranrib

Summary

- Modern applications requires more than just
monitoring

- Distributed tracing becomes a crucial component
in such environments

« Stop implementing your own solutions unless
heeded

epsagon

epsagon.com

@lehly

-
O
>
<
-
©
L
—

AARLRLRLRLR LS Y
ALAL AL AL AL AL ALY

/ AL AL AL AL AL AL AL ALY

ALY / /

dtd’llfrfardld r/
/ AL LL AL AL AL AR AR AL

