Application Modernization And Portability Across Clouds

Ravikumar Alluboyina

Senior Product Architect, Robin.io https://get.robin.io

Spectrum of Applications

Application Modernization

Modernization.. The trend

- > What is Modernization?
 - > Define modernization?
 - > Is there a standard?
- > Why would I want to modernize my application?
 - > What will I gain by modernizing
- > How can I modernize my application?
 - > What are the tools available?
 - > What processes should I adopt?

Q. Virtualization did not force me to modernize my applications, why now? What changed?

Modern Application .. The 'What'

Application that can adapt to any environment and perform equally well

- > Bare metal, Virtual machines, Cloud, Containers
- > Mode of delivery (rpm, deb, tar vs runnable formats vmdk, docker container etc)
- > Can integrate easily with pluggable infrastructure component.
 - > Security, Performance monitoring, Logging, backup etc.,
- > Is elastic, can grow and shrink depending on the load and usage
- > Is agile / portable

Why now, what changed?

> The infrastructure landscape and tooling has changed drastically

- > We have Cloud, Virtual Machines, Containers, Dockers
- > Security, Logging, Monitoring frameworks have evolved

Q. Why is this a smooth transition for applications?

Application didn't need to change. Infrastructure emulated the baremetal

Q. Why is this a huge leap?

Docker / CRI-O, Kubernetes are all very opinionated frameworks. Applications need to be re-designed for these platforms.

Modernization .. The 'How'

Containerization

Containerization: The process

- > Process separation
 - > Separate the application into multiple processes (if possible and if it makes sense)
 - > For example:
 - > Separate the nodemanager and datanode in Hadoop,
 - > (or) query router and config server in MongoDB
- Configuration separation
 - > Find the configuration paths (/etc, /var, etc) and persist it on a different volume (on the host)
 - > This is by far the most difficult process for legacy applications
- > Data separation
 - > Attach volumes to the container so data can be preserved across restarts
- > Entrypoint
 - > Add enough logic in entrypoint to handle first-start, subsequent starts and upgrades.

Did you really think this was going to be enough to Dockerize?

Docker: The real issues

Incomplete cgroups virtualization causes many Big Data and Databases to misbehave

CPU

- > Contiguous core IDs, CPU ID mapping (Kudu), accurate threads: cores mapping (DB)
- > NUMA aware assignment (HANA)

Memory:

- > JVM sees entire host memory even if you cap the memory for container (Any JVM app)
- > Memory allocation inconsistencies (hugepages, shared page cache) (Oracle)

Storage

- > Apps that need raw block devices need correct WWNs management (e.g., Oracle, MapR)
- > blkio cgroups setting is useless to avoid noisy neighbor problems (All apps)

Kubernetes

Application Composition

https://github.com/helm/charts/tree/master/stable/mysql

Application Composition .. The complexity

Productize

State of Kubernetes eco-system

There are over 30 Storage vendors and 20 Network vendors providing Storage & Networking solutions for containers and Kubernetes¹

> CNCF²: 30% say Storage is a big challenge, 30% say Networking is a challenge in Kubernetes

Despite so many vendor solutions, why is it still a challenge for so many people?

robin.io

1 https://github.com/cncf/landscape

MySQL Application Composition

Wait

Performance issues !!!!

https://github.com/helm/charts/tree/master/stable/mysql

What about InnoDB storage recommendation

- Non-rotational storage generally provides better performance for random I/O operations; and rotational storage for sequential I/O operations. When distributing data and log files across rotational and non-rotational storage devices, consider the type of I/O operations that are predominantly performed on each file.
- Random I/O-oriented files typically include <u>file-per-table</u> and <u>general tablespace</u> data files, <u>undo</u> <u>tablespace</u> files, and <u>temporary tablespace</u> files. Sequential I/O-oriented files include InnoDB <u>system</u> <u>tablespace</u> files (due to <u>doublewrite buffering</u> and <u>change buffering</u>) and log files such as <u>binary log</u>files and <u>redo log</u> files.

Let us be a good MySQL Admin and follow recommendations

MySQL Application Composition

Wait

Performance issues !!!!

https://github.com/helm/charts/tree/master/stable/mysql

Any guesses ??

Let us look at it more closely

Troubleshooting

Let us fix it ..

Are we good ??

Not yet.. Not completely

Perils of consolidation ..

Perils of consolidation ..

Imagine managing 100s of PODs and 1000s of PVCs allocated from 100s of Drives

Are we good ??

Cassandra Admin is NOT

Confidential – Restricted Distribution

What's with Cassandra ??

Still resilient to disk failure ???

Let us fix it ...

What about Hadoop (HBase, Kudu)?

Hadoop components

Big data deployment and management challenges

Recap

- > Data-heavy applications deal with Multiple volumes
- > Every volume will have different IO characteristics
- > Consolidation (packing) makes the problem even harder
- > Application Replication (Cassandra / Mongo) makes the allocation tricky

What are we looking for???

Application Aware Storage Provisioning

Data Protection and Cloud Portability

Let us talk Data Protection

DB Checkpoints

Volume snapshots

Rollback to this snapshot

What is the problem here ?

Volume snapshots

Config Drift !!!

Let us fix it ...

Recap (Data Protection)

- > Snapshots and backups are not just data dumps
- > Not all application have checkpoints and snapshots
- > Data snapshots are prone to config drift issues
- > Consistency group is a very critical construct
- > Application buffers / FS page cache will need to be flushed to disk

What are we looking for.....???

Application Snapshots

Any other challenges

Let us talk about portability

- > Why do we need this?
 - > Hardware refresh
 - > Datacenter migration
 - > Vendor lock-in
 - > Performance
 - > Test / Dev setups
 - > Upgrade firedrills

Application backups

Collaborate on Applications using a Git-like workflow

robin.io

Robin Architecture Overview

ROBIN software allows you run complex Big Data and Databases on Kubernetes (Storage + Networking + Application Workflow Management + Kubernetes)

DEPLOYMENT PROOF POINTS

11 billion security events ingested and analyzed a day (Elasticsearch, Logstash, Kibana, Kafka)

6 petabytes under active management in a single ROBIN cluster (Cloudera, Impala, Kafka, Druid)

400 Oracle RAC databases managed by a single ROBIN cluster (Oracle, Oracle RAC)

Product Demos

Demo Series 1

ROBIN's Kubernetes-native Storage and Data Management stack to deploy and manage day-2 operations of Stateful Apps **Demo Series 2**

ROBIN's Super-Operator for Enterprise Apps

Snapshot and Rollback

<u>Clone</u> <u>Backup</u> <u>Cloud-portability</u> 1-click Deploy, Cloud-Sync and Cloud-Motion

get.robin.io Portal

> <u>get.robin.io</u>: Download Robin Storage for free

> <u>docs.robin.io</u>: Read product documentation

> <u>slack.robin.io</u>: Interact with Robin engineering

What is ROBIN?

ROBIN extends Agility, Efficiency and Portability of Kubernetes to All Applications, even complex Big Data, Databases, Al/ML and Custom Apps, on Any Infrastructure, On-Premise, Hybrid Cloud or Multi-Cloud

ROBIN.IO

Supercharge Kubernetes to Deliver Big Data and Databases as-a-Service

1-click Deploy, Scale, Snapshot, Clone, Upgrade, Backup, Migrate

