
Service Mesh -
from technical selection to best practice

© 2018 Cloud Native Computing Foundation2

About me

• Ruofei Ma – Principal software engineer, FreeWheel

• The author of the book Istio in practice

• The columnist of Service mesh in practice in time.geekbang.org

• A consultant of the IT book expert committee of Posts and Telecom Press

• A member of the committee of the largest service mesh technology

community, servicemesher.com in China

• Istio.io contributor

© 2018 Cloud Native Computing Foundation3

Agenda

• Why service mesh

• Market of service mesh

• Istio vs AWS App Mesh

• Best practice

• In the future

Why service mesh

© 2018 Cloud Native Computing Foundation5

Concept of service mesh

• Key points

– Infrastructure

– Delivery requests

– Sidecar proxy

– Transparency

• Service governance

picture is from https://softwareengineeringdaily.com/2020/01/07/service-meshes/

https://softwareengineeringdaily.com/2020/01/07/service-meshes/

© 2018 Cloud Native Computing Foundation6

Disadvantages of traditional service governance

• Complexity
• Costs

– Human resource
– Operations

• Coupling with application
• Language binding

© 2018 Cloud Native Computing Foundation7

Advantages of service mesh

• Transparency
• Lower costs

– Development
– Operation & maintenance
– Resources

picture is from https://www.nginx.com/blog/what-is-a-service-mesh/

https://www.nginx.com/blog/what-is-a-service-mesh/

Market of service mesh

© 2018 Cloud Native Computing Foundation9

Products

Open-source Hosted

© 2018 Cloud Native Computing Foundation10

Trends

• Mixed-cloud support

• Usability

• Adoption costs

• Performance

• Standardization

• Ecosystem

Istio vs AWS App Mesh

© 2018 Cloud Native Computing Foundation12

Why Istio & AWS App Mesh

• First-tier companies (Google & Amazon)
• Open source vs hosted product
• Business scenarios: heavy user of AWS

© 2018 Cloud Native Computing Foundation13

Superstar: Istio

v0.1 v1.0 v1.1 v1.2 v1.3 v1.4 v1.5 v1.6

© 2018 Cloud Native Computing Foundation14

Istio’s architecture revolution

v1.0

v1.1

v1.5

© 2018 Cloud Native Computing Foundation15

Challenger: AWS App Mesh

© 2018 Cloud Native Computing Foundation16

Overview of App Mesh

The picture from https://www.awsgeek.com/AWS-App-Mesh/

https://www.awsgeek.com/AWS-App-Mesh/

© 2018 Cloud Native Computing Foundation17

Characteristics of App Mesh

• Multiple workloads support
• Unify user experience
• Integration for AWS services

Comparison

© 2018 Cloud Native Computing Foundation19

Comparison – product vision

• It is a completely open source service mesh that
layers transparently onto existing distributed
applications.

• It is also a platform, including APIs that let it
integrate into any logging platform, or telemetry
or policy system.

• Istio’s diverse feature set lets you successfully, and
efficiently, run a distributed microservice
architecture, and provides a uniform way to
secure, connect, and monitor microservices.

• App Mesh gives you a simple, declarative
approach to model service communication. You
can define rules for service-to-service
communication and everything else is handled
automatically.

• It provides consistent metrics, logs, and traces,
and gives end-to-end visibility across an
application to help you quickly identify and
debug issues.

• Our vision for App Mesh is an AWS-native service
mesh that integrates equally well with AWS
primitives and advanced services.

Istio AWS App Mesh

© 2018 Cloud Native Computing Foundation20

Comparison – overview

Istio AWS App Mesh

Platform Kubernetes, Consul, GCP AWS (EKS, ECS, EC2, Fargate …)

Sidecar Envoy Envoy

Automatic injection Yes Yes

Protocol TCP, HTTP, gRPC TCP, HTTP, gRPC

Cross cluster mesh Yes Yes

© 2018 Cloud Native Computing Foundation21

Comparison – architecture

© 2018 Cloud Native Computing Foundation22

Comparison – features

Istio AWS App Mesh

Security

Observability

Traffic
control Security

Observability

Traffic
control

© 2018 Cloud Native Computing Foundation23

Comparison – traffic control

• Routing & traffic shifting
– Traffic policy (Load balancing, connection

pool)
– Percentage-base traffic splits
– Header- & path-based traffic splits

• Resilience
– Timeout, retry, circuit breaking

• Debugging & testing
– Mirror, fault injection

• Routing
– Percentage-base traffic splits
– Header- & path-based traffic splits
– Service discovery: DNS, Cloudmap

• Resilience
– Timeout, retry
– Path-based retry

Istio AWS App Mesh

© 2018 Cloud Native Computing Foundation24

Comparison – CRDs for traffic control

© 2018 Cloud Native Computing Foundation25

Comparison – security

• CA certificate
• Authentication

– Peer (mTLS)
– Request (JWT)

• Authorization policy

• CA certificate
• mTLS
• AWS IAM

Istio AWS App Mesh

© 2018 Cloud Native Computing Foundation26

Comparison – observability

• Logging
• Metrics

– Prometheus, Grafana

• Tracing
– Zipkin, Jaeger, Datadog …

• Kiali

• Logging
• Metrics

– Prometheus, Grafana

• Tracing
– Jaeger, X-Ray, Datadog …

• AWS Cloud Watch

Istio AWS App Mesh

© 2018 Cloud Native Computing Foundation27

Comparison - maintainability

Istio AWS App Mesh

Deployment Hard -> Easy Easy

Technical support None Official support center

Troubleshooting More Less

User guide & reference Good Medium

© 2018 Cloud Native Computing Foundation28

Comparison – troubleshooting

• CLI (istioctl)
• Envoy admin API & Log
• controlZ & pilot debug API
• Kiali

• Envoy admin API & Log
• Controller & Injector log
• X-ray/ CloudWatch

Istio AWS App Mesh

© 2018 Cloud Native Computing Foundation29

Comparison - costs

Istio AWS App Mesh

Pricing Free Free

Human resource Higher Lower

Learning costs Higher Lower

© 2018 Cloud Native Computing Foundation30

How to choose?

• Identify the important problems solved by service mesh.

• Consider your requirements (features, usability, performance, etc.)

• Consider your company and system situations.

• Follow the tutorial to install, implement features with mesh.

• Performance test

Our practice

© 2018 Cloud Native Computing Foundation32

Business scenario

• FreeWheel – a Comcast company
• we’re pioneering a new TV ecosystem, transforming the way

buyers & sellers transact, manage, & optimize their advertising
COMPANY

• Unify linear & digital TV
• Automate planning
• Buying & selling

BUSINESS

• Digital media advertising system
• MarketplacePRODUCT

© 2018 Cloud Native Computing Foundation33

To cloud-native

Monolith

• before 2017

Micro-service adoption
Containerization• 2017 ~ 2018

System on AWS
Mesh & serveless• 2019 ~ present

© 2018 Cloud Native Computing Foundation34

Pain points

• Mixed deployment environments
• Complex business scenario
• Traffic control
• Lack of observability for services
• Troubleshooting

Services
50+

gRPC methods
1900+

Traffic
1Billion/d

© 2018 Cloud Native Computing Foundation35

App Mesh adoption – Steps

IAM
permission

Install
CRDs

Install
controller &

injector

Enable
auto-inject

© 2018 Cloud Native Computing Foundation36

App Mesh adoption – pilot project

© 2018 Cloud Native Computing Foundation37

App Mesh adoption – configuration

© 2018 Cloud Native Computing Foundation38

App Mesh adoption – features

• Routing - Done

• Retry & Timeout - Done

• Observability – Done

• Canary release – In progress

© 2018 Cloud Native Computing Foundation39

App Mesh adoption - performance benchmark

0

20

40

60

80

100

120

140

10 requests & 10
concurrency

100 requests & 10
concurrency

1000 requests & 10
concurrency

100 requests & 100
concurrency

Throughputs

without mesh with mesh

© 2018 Cloud Native Computing Foundation40

App Mesh adoption - performance benchmark

0
10
20
30
40
50
60
70
80
90

100

10 requests & 10
concurrency

100 requests & 10
concurrency

1000 requests & 10
concurrency

100 requests & 100
concurrency

Time per requests

without mesh with mesh

© 2018 Cloud Native Computing Foundation41

Next steps

• Optimizing the chain of service communication

• Mesh by GitOps

• Deployment automatically (Flagger, Jenkins X)

In the future

© 2018 Cloud Native Computing Foundation43

Currently

• Users: various deployment environments
• Products: maturity

Practices

Products

© 2018 Cloud Native Computing Foundation44

Standardization

The objective of the Universal Data Plane
API Working Group (UDPA-WG) is to bring
together parties across the industry
interested in a common control and
configuration API for data plane proxies
and load balancers.

A specification for service meshes that run
on Kubernetes. It defines a common
standard that can be implemented by a
variety of providers. This allows for both
standardization for end-users and
innovation by providers of Service Mesh
Technology. SMI enables flexibility and
interoperability and covers the most
common service mesh capabilities.

UDPA – Universal data plane API SMI – Service mesh interface

© 2018 Cloud Native Computing Foundation45

Ecosystem of service mesh

Practice

UGC

CommunityPlatform

Libraries &
Tools

Products

© 2018 Cloud Native Computing Foundation46

Service mesh pattern

…
Cache
Mesh

Msg
Mesh

DB
Mesh

Service
Mesh

Thank You!

Contact me:
malphi@gmail.com
Dingtalk: malphi

ServiceMesher Community Cloud Native Community

