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Harbor Focus

Harbor is a trusted cloud native registry that stores, 
signs, and scans content. The mission is to provide 
cloud native environments the ability to confidently 
manage and serve container images.
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Registry

Images
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Push Pull

• Repository for storing images
• Intermediary for shipping and distributing images and applying RBAC

Lifecycle of Containers and Images
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• Created by VMware in 2014, adopted by users worldwide
• Registry for containers and Helm charts
• Focus: stores, signs and scans content

− Provides consistent experience on- and off-prem

• Open Source (Apache 2.0)
• Accepted into sandbox stage in July 2018 as first container registry
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Project Harbor



Project History
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Open Source Stats



Registry features include
− Multi-tenant content signing and validation
− Identity integration and role-based access control
− Security and vulnerability analysis
− Image replication between instances
− Internationalization (currently English and Chinese)

Operational experience
− Deployed in containers
− Extends, manages, and integrates proven open source components
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Architecture
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Deterministic Images?

• Base image ubuntu:latest could be changed between builds
• ubuntu:14.04 could also be changed due to patching

• apt-get (curl, wget..) does not guarantee identical packages
• ADD depends on the build time environment to add files
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FROM ubuntu

RUN apt-get install –y python

ADD app.jar /myapp/app.jar

D
ockerfile

C
ha

lle
ng

es



Image replication (synchronization)
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Shipping image in “binary format”
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Global Image Replication
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• Identical images 
across multiple sites

• Image backup
• Local access
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Access Control to Images
• Organizations often keep images within their own organizations

■ Intellectual property stays in organization

• People with different roles should have different access
■ Developer – Read/Write
■ QA / QE – Read Only

• Different rules should be enforced in different environments
■ Dev/Test Environment – many people can access
■ Production – a limited number of people can access

• Can be integrated with internal user management system
■ LDAP/Active Directory
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Role-Based Access Control (RBAC)
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 Other security considerations

• Enable content trust by installing Notary service
– Image is signed by publisher’s private key during pushing
– Image is pulled using digest

• Perform vulnerability scanning
– Prevent images with vulnerabilities from being pulled
– Regular scanning based on updated vulnerability database
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Content trust for image provenance
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Vulnerability scanning
– Set vulnerability threshold
– Static analysis of vulnerability by inspecting filesystem of container 

image and indexing features in database
– Prevent images from being pulled if they exceed threshold
– Periodic scanning based on updated vulnerability database

Image Vulnerability Scanning
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Update vulnerability data regularly from various sources:
– Debian security Bug Tracker
– Ubuntu CVE Tracker
– Red Hat Security Data
– Oracle Linux Security Data
– Alpine SecDB
– NIST

Image Vulnerability Scanning



Web interface and vulnerability scanning
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 Image distribution

• Container images are usually distributed from a registry
• Registry becomes the bottleneck for a large cluster of nodes

■ I/O
■ Network

• Scaling out an registry server
■ Multiple instances of registry sharing same storage (such as S3 or local 

Ceph cluster)
■ Multiple instances of independent registry sharing no storage
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Replication
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Docker Client
push

pull pull

• Load balancing

• Works well with 
geographically 
distributed clients
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 High Availability of Registry
• Goal: remove single point of failure on registry
• Three models to achieve HA

■ Shared storage
■ Replication (no shared storage)
■ Using other HA platform

• Current focus: easy HA deployment via Helm chart
• Evaluating cluster-like functionality to automagically share data between 

nodes
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Demo



Roadmap



Roadmap
• v1.7 release features being worked on
• v1.8 roadmap: open for feedback :)

− (see next slide)
− Ping us on GitHub
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https://github.com/goharbor/harbor/wiki/Harbor-Roadmap


Roadmap

• Quotas
• Lifecycle support of Harbor 
on K8s

• Image proxy’ing + cache
− Update / rollback of 

upstream cache
− Caching of upstream 

repos (e.g., DockerHub)
• Token-based auth

• Image scanning 
improvements

• Clustering – local and 
remote

• Increase scalability
• Improved RBAC
• Improved multi-tenancy
• harborctl CLI client
• Tag lifecycle management
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Contributing to Future of Harbor
• Contributions of all kinds are welcome

− Documentation
− Issues

■ Finding and opening issues
■ Wrangling issues

− Code (and reviews!)
− Testing builds
− Etcetera
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Ping us!
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web: https://www.goharbor.io
gh: https://github.com/goharbor
slack: slack.cncf.io (#habor and #harbor-dev)

https://www.goharbor.io
https://github.com/goharbor
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Thank you!


