
1

Harbor
James Zabala
Maintainer

Harbor Focus

Harbor is a trusted cloud native registry that stores,
signs, and scans content. The mission is to provide
cloud native environments the ability to confidently
manage and serve container images.

3

Agenda

1 Containers 101

2 Introduction to Harbor

3 Image Consistency

4 Image Security

5 Image Distribution

6 Registry Robustness / High Availability

4

Agenda

1 Containers 101
2 Introduction to Harbor

3 Image Consistency

4 Image Security

5 Image Distribution

6 Registry Robustness / High Availability

5

6

Images

Containers
Stop
Start

Restart

RunCommit

Dockerfile
Build

tag

tar archive

Save

Load

Push

Registry

Images

Pull

Lifecycle of Containers and Images

Registry

Images

7

Push Pull

• Repository for storing images
• Intermediary for shipping and distributing images and applying RBAC

Lifecycle of Containers and Images

Agenda

1 Containers 101

2 Introduction to Harbor
3 Image Consistency

4 Image Security

5 Image Distribution

6 Registry Robustness / High Availability

8

• Created by VMware in 2014, adopted by users worldwide
• Registry for containers and Helm charts
• Focus: stores, signs and scans content

− Provides consistent experience on- and off-prem

• Open Source (Apache 2.0)
• Accepted into sandbox stage in July 2018 as first container registry

9

Project Harbor

Project History

10

Open Source Stats

Registry features include
− Multi-tenant content signing and validation
− Identity integration and role-based access control
− Security and vulnerability analysis
− Image replication between instances
− Internationalization (currently English and Chinese)

Operational experience
− Deployed in containers
− Extends, manages, and integrates proven open source components

12

Key Features

Architecture

13 13

API Routing

Core Service (API/Auth/GUI)

Image
Registry

Trusted
Content

Vulnerability
Scanning Job Service Admin

Service

Harbor components
3rd party components

SQL DatabaseKey/Value
Storage

Persistence components

Local or Remote Storage (block, file, object)

Users (GUI/API) Container
Schedulers/Runtimes

Consumers

LDAP/Active
Directory

Supporting services

H
arbor Packaging

Docker

Kubernetes

14

Publicly Referenceable Customers

Agenda

1 Containers 101

2 Introduction to Harbor

3 Image Consistency
4 Image Security

5 Image Distribution

6 Registry Robustness / High Availability

15

Deterministic Images?

• Base image ubuntu:latest could be changed between builds
• ubuntu:14.04 could also be changed due to patching

• apt-get (curl, wget..) does not guarantee identical packages
• ADD depends on the build time environment to add files

16

FROM ubuntu

RUN apt-get install –y python

ADD app.jar /myapp/app.jar

D
ockerfile

C
ha

lle
ng

es

Image replication (synchronization)

17

Project

Images

Policy

Image

Project

Images

Initial replication

Image

Incremental replication
(including image deletion)

Shipping image in “binary format”

18

Dev Registry

CI

Git

Test Registry

images
images

images

Staging Registry

images
images

Images are synchronized between environments
by using Harbor registry.

Production
Registry

images

Global Image Replication

19

• Identical images
across multiple sites

• Image backup
• Local access

Agenda

1 Containers 101

2 Introduction to Harbor

3 Image Consistency

4 Image Security
5 Image Distribution

6 Registry Robustness / High Availability

20

Access Control to Images
• Organizations often keep images within their own organizations

■ Intellectual property stays in organization

• People with different roles should have different access
■ Developer – Read/Write
■ QA / QE – Read Only

• Different rules should be enforced in different environments
■ Dev/Test Environment – many people can access
■ Production – a limited number of people can access

• Can be integrated with internal user management system
■ LDAP/Active Directory

21

Role-Based Access Control (RBAC)

22

Members Images

Guest:

Developer:

Admin:

docker pull ...

docker pull/push

Project

operation & management
Settings

 Other security considerations

• Enable content trust by installing Notary service
– Image is signed by publisher’s private key during pushing
– Image is pulled using digest

• Perform vulnerability scanning
– Prevent images with vulnerabilities from being pulled
– Regular scanning based on updated vulnerability database

23

Content trust for image provenance

24

Registry

Notary

1. docker push tag

2. Signature of

tag’s manifest

3. Verify signature
status, fetch digest.

4. docker pull $digest

Image Creator Image Consumer

Verify signature status.

Policy Controller

25

Vulnerability scanning
– Set vulnerability threshold
– Static analysis of vulnerability by inspecting filesystem of container

image and indexing features in database
– Prevent images from being pulled if they exceed threshold
– Periodic scanning based on updated vulnerability database

Image Vulnerability Scanning

26

Update vulnerability data regularly from various sources:
– Debian security Bug Tracker
– Ubuntu CVE Tracker
– Red Hat Security Data
– Oracle Linux Security Data
– Alpine SecDB
– NIST

Image Vulnerability Scanning

Web interface and vulnerability scanning

27

Agenda

1 Containers 101

2 Introduction to Harbor

3 Image Consistency

4 Image Security

5 Image Distribution
6 Registry Robustness / High Availability

28

 Image distribution

• Container images are usually distributed from a registry
• Registry becomes the bottleneck for a large cluster of nodes

■ I/O
■ Network

• Scaling out an registry server
■ Multiple instances of registry sharing same storage (such as S3 or local

Ceph cluster)
■ Multiple instances of independent registry sharing no storage

29

Replication

30

Docker Client
push

pull pull

• Load balancing

• Works well with
geographically
distributed clients

Agenda

1 Containers 101

2 Introduction to Harbor

3 Image Consistency

4 Image Security

5 Image Distribution

6 Registry Robustness / High Availability

31

 High Availability of Registry
• Goal: remove single point of failure on registry
• Three models to achieve HA

■ Shared storage
■ Replication (no shared storage)
■ Using other HA platform

• Current focus: easy HA deployment via Helm chart
• Evaluating cluster-like functionality to automagically share data between

nodes

32

Demo

Roadmap

Roadmap
• v1.7 release features being worked on
• v1.8 roadmap: open for feedback :)

− (see next slide)
− Ping us on GitHub

35

https://github.com/goharbor/harbor/wiki/Harbor-Roadmap

Roadmap

• Quotas
• Lifecycle support of Harbor
on K8s

• Image proxy’ing + cache
− Update / rollback of

upstream cache
− Caching of upstream

repos (e.g., DockerHub)
• Token-based auth

• Image scanning
improvements

• Clustering – local and
remote

• Increase scalability
• Improved RBAC
• Improved multi-tenancy
• harborctl CLI client
• Tag lifecycle management

36

Contributing to Future of Harbor
• Contributions of all kinds are welcome

− Documentation
− Issues

■ Finding and opening issues
■ Wrangling issues

− Code (and reviews!)
− Testing builds
− Etcetera

37

Ping us!

38

web: https://www.goharbor.io
gh: https://github.com/goharbor
slack: slack.cncf.io (#habor and #harbor-dev)

https://www.goharbor.io
https://github.com/goharbor

39

Thank you!

