Tales Of The Kubernetes Ingress Networking:
Deployment Patterns For External Load

Balancers

How To Access The Slides?

e Slides (HTML): https://containous.github.io/slides/webinar-cncf-jan-2020
e Slides (PDF): https://containous.github.io/slides/webinar-cncf-jan-2020/slides.pdf

e Source on O: https://github.com/containous/slides/tree/webinar-cncf-jan-2020

https://containous.github.io/slides/webinar-cncf-jan-2020
https://containous.github.io/slides/webinar-cncf-jan-2020/slides.pdf
https://github.com/containous/slides/tree/webinar-cncf-jan-2020

How To Usge The Slides?

e Browse the slides: Use the arrows
» Change chapter: Left/Right arrows
= Next or previous slide: Top and bottom arrows

e Overview of the slides: keyboard’s shortcut "o"

e Speaker mode (and notes): keyboard’s shortcut "s"

Whoami

e Manuel Zapf:
» Head of Product Open Source @

https://containo.us/
https://twitter.com/mZapfDE
https://github.com/SantoDE

https://containo.us

e \We Believe In Open Source
e We Deliver Traefik, Traefik Enterprise Edition and Maesh
e Commercial Support

e 30 people distributed, 90% tech

&

CONTAINOUS

https://containo.us/

Once Upon A Time

There was Kubernetes cluster.

This Cluster Had Nodes And Pods

ButPods Had Private TPs

How to route traffic to these pods? And between pods on
different nodes?

D E| Node . Node . Node

? 4 ™ "~ é)
: \ Pod Pod Pod
\) _ _ J
O f \ /?
/ Pod
@/? | |

Services Came To The Rescue

Thelr goal: Expose Pods to allow incoming traffic

E_

Services Are Load-Balancers

e Services have I-N Endpoints

e EndPoints are determined by Kubernetes API

—————————

https://kubernetes.io/docs/concepts/services-networking/service/#externalname

Different Kinds Of Services

for different communications use cases:

e From inside: type "ClusterIP" (default).

e From outside types "NodePort" and "LoadBalancer".

Services: Cluster]P

Virtual IP, private to the cluster, cluster)-wide (e.g. works from

any node to any other node)

Node

-

Pod

-

Node

-

Pod

-

~

J

e

Service ClusterlP

\\/\/

Services: NodePort

Uses public IPs and ports of the nodes, kind of "Routing grid"

Port 30500 I Port 30500 Port 30500

Services: LoadBalancer

Same as NodePort,excepts it requires (and uses) an external
Load Balancer.

Services Are Not Enough

e Context: Exposes externally a bunch of applications

e Challenge: overhead of allocation for LBs. For each
application:

= One LB resource (either a machine or a dedicated
appliance)

= At least one public IP
» DNS nightmare (think about the CNAMEs to create...)

s No centralization of certificates, logs, etc.

And Then Came The Ingress

Example with Traefik as Ingress Controller:

TrAETIK As YOUR INGRESS CONTROLLER IN KUBERNETES

___’_,__-cli""_ — e
INCOMING REQUESTS READS THE INGRESS INGRESS j
TO KNOW WHERE TO ,

fiRsT-DOMAIN.COM GOES TO fIRST-SERVICE
ROUTE THE REQUESTS |

Awwf\ -

»

SECOND-DOMAIN.COM GOES TO SECOND-SERVICE

_)
) - —
traefik)
Q INGRESS CONTROLLER -
_ ..‘\’T'/_._/“\ \
\‘ \‘-} .
s Y “'v ; (
\
Q o I“-. ’
POD POD POD POD |/

FIRST-SERVICE SECOND-SERVICE

—

Notes Aboul The Ingresses

Ingress Are Standard Kubernetes Applicalions

e Deployed as Pods (Deployment Or as DaemonSet)

e Exposed with a Service:
m You still need access from the outside

= But only one service to deal with (ideally)

Ingress Have Services Too

Public Domain/IP

Service
LoadBalancer

. Node

~

Ingress
Controller
(Pod)

~

J

. Node

{ Pod

Service
ClusterlP

. Node

-

Why Should T Care?

e SImplified Setup:
= Single entrypoint, less configuration, better measures
m | ess resources used

m Separation of concerns: differents algorithms for load
balancing, etc.

Why Challenges Does T Make?

e Designed for (simple) HTTP/HTTPS cases
s TCP/UDP can be used, but are not first-class citizens
= "Virtual Host First" centric

e Feels like you must carefully select your (only) Ingress
Controller

So What?

e Kubernetes gives you freedom:
= You can use multiple Ingress Controllers!
e Kubernetes gives you choices:

= SO mMuch deployment patterns that you can do almost
anything

Fxternal Load Balancers

Did You Just Say "External"?

e Outside the "Borders" of Kubernetes:
» Depends on your "platform" (as in infrastructure/cloud)
e Still Managed by Kubernetes (Automation)

» Requires "plugins" (operators/modules) per Load
Balancer provider

= No API or no Kubernetes support: requires switching to
NodePort

Tell Me Uour Kubernetes Distribution

..and I'll tell you which LB to use...

Cloud Managed Kubernetes

e Cloud providers provides thelr own external LBs
= Fully Automated Management with APIs
s Great UX due to the integration: works out of the box
m Benefits from cloud provider HA and performances
o But:
= YOou have to pay for this :)
s Configuration is cloud-specific (using annotations)

s Relies on LB implementation limits

Bare-Metal Kubernetes

Aka. "Run it on your boxes"
e Best approach: , @ Load Balancer implementation
for Kubernetes, hosted inside Kubernetes
s Uses all Kubernetes primitives (HA, deployment, etc.)
s Allows Layer 2 routing as well as BGP
s But... still not considered production ready
e Otherwise: external static (or legacy) LB

= Requires switching to NodePort Service

https://metallb.universe.tf/

Cloud "Semi-Managed" Kubernefes

e Depends on the compute provider: cloud or bare-metal

e YOU need a tool for mananaging clusters: kubeadm, kops,
etc.

= Most of these tools already manage LB If the provider
does.

Source TP On The Kingdom Of Kubernetes

Business Case: Source TP

As a business manager, | need my system to
know the IP of the emitters of the requests
to track usage, write access logs for legals
reasons and limit traffic in some cases.

NAT/DNAT/SNAT

e NAT stands for "Network Adress Translation"

m |Pv4 world: Routers "masquerades” |IPs, to allow routing
from different network

e DNAT stands for "Destination NAT"

m Masquerade of the destination |IP with the internal pod
1=

e SNAT stands for "Source NAT"

= Masqguerade of the source |P with the router’s IP

o

NAT/DNAT/SNAT

Destination:
85.12.12.12

DNAT

NS
Destination:
10.0.2.10

Client
IP: 93.25.25.25

IP: 85.12.12?@: 10.0.0.1

N#

Server
IP: 10.0.2.10

/

N#

Preserve Source TP

e Rule: We do NOT want SNAT to happen

e Challenge: many intermediate components can interfere
and SNAT the packets in our back!

Inside Kubernetes: Kube-Proxy

e kube—-proxy IS a Kubernetes component, running on each
worker hode

e Role: manage the virtual IPs used for Services

e Challenge with Source |IP: kube-proxy might SNAT requests
e SNAT by kube-proxy depends on the Service:

m Let's do a tour of Services Types!

Source TP With Service ClusterIP

e \When kube-proxy IS In "Iptables" mode: no SNAT v

" This Is the default mode

= No Intermediate component

. Node

Source IP With Service NodePort (Default)

e SNAT Isdone X (routing to the node where pod Is):
= First node to node routing through nodes network

= Then node to pod routing through pod network

‘ kube-proxy | Service NodePort

Source TP With Service NodePort (Local
Endpoint)

e No SNAT v with externalTrafficPolicy setto Local

e Downside: Dropped reguest If no pod on receiving node

Source IP With Service LoadBalancer
(Defaulh)

e Default: SNAT Isdone X, same as NodePort

s External Load Balancer can route to any node

m |f no local endpoint: Node to node routing with SNAT

Source TP With Service LoadBalancer
(Local Endpoint)

e However, No SNAT v for load balancers implementing
Local externalTrafficPolicy:

» GKE/GCE LB, Amazon NLB, etc.

= Nodes without local endpoints are removed from the
LB by failing healthchecks

» [[Pros: no dropped request from client view, but nodes
always ready

m [[ICons: relies on healthcheck timeouts

Alferndatives When SNAT Happen

e Sometimes, SNAT Is mandadatory
= External LB
= Network Constraint
m |[ngress Controller in the middle
e "Network Is based on layers" - let's use another layer:
m [T using HTTP, retrieve the Source IP from headers
s If using TCP/UDP, use the "Proxy Protocol"
= Or use distributed logging and tracing

HTTP Protocol Headers

e X—-Forwarded-From holds a comma-separated list of all the
source |IPs SNAT during all network hops.

= Vv If you have an External LoadBalancer or an Ingress
Controller supporting this header.

= /\ Not standard (header starting with x-) so not all
HTTP appliance might support It.

o Upcoming

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded

Proxy Profocol

e Introduced by
e Happens at Layer 4 (Transport) for TCP/UDP

e Goal: "chain proxies / reverse-proxies without losing the
client information"

e Supported by a lot of appliances in 2019: AWS ELB, Traefik,
Apache, Nginx, Varnish, etc.

e Use Case: when SNAT happen AND not way to use HTTP. H

https://www.haproxy.com/blog/haproxy/proxy-protocol/

Disﬁibuﬁng Logging And Tracing

o /dea:

= Collect the source IP as soon as possible In distributed
[eleellgle

s Use distributed tracing to track the request In the
system

e [IPros: no more complex network setups, distributed
logging and tracing stacks are already on your Kubernetes
cluster (or will soon be)

e [ICons: relies on the distributed logging/tracing stacks

Use Cases

External Load Balancer With Traffic Policy

e [IPros: full automation

e BCons: depends on actual LB implementation

\
\
\
\

. Node

. Node
[Pod }
——

{ Kube- proxy]
Service LoadBalancer AUt ‘t' '
externalTrafficPolicy=true utomatically

Configures
/[kube- proxy

A\

%

'l
I
)[Load Balancer & ---.______ ____.--- o

Client

Capturing Source IP From HTTP Headers

e [IPros: Simplified Setup
e KBCons: Only works with HTTP

a)

Ingress-Controller

- /
A

X-Forward-From: Real IP from Client

O . -
— 1) HTTP Reverse
/\ Proxy

_ Y,

https://kubernetes.io/docs/tutorials/services/source-ip/
https://enwikipedia.org/wiki/Network_address_translation

https://www.asykim.com/blog/deep-dive-into-kubernetes-
external-traffic-policies

https://kubernetes.io/docs/tutorials/services/source-ip/
https://en.wikipedia.org/wiki/Network_address_translation
https://www.asykim.com/blog/deep-dive-into-kubernetes-external-traffic-policies

Routing in
the Cloud

Connecting the Dots in a
Microservices Architecture

-

@ contaiNous
L

https://info.containo.us/request-white-paper-routing-in-the-
cloud

https://info.containo.us/request-white-paper-routing-in-the-cloud

Thank Youl

¥ omZapfDE
) SantoDE

e Slides (HTML): https://containous.github.io/slides/webinar-cncf-jan-2020
e Slides (PDF): https://containous.github.io/slides/webinar-cncf-jan-2020/slides.pdf

e Source on O: https://github.com/containous/slides/tree/webinar-cncf-jan-2020

https://twitter.com/mZapfDE
https://github.com/SantoDE
https://containous.github.io/slides/webinar-cncf-jan-2020
https://containous.github.io/slides/webinar-cncf-jan-2020/slides.pdf
https://github.com/containous/slides/tree/webinar-cncf-jan-2020

