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Once Upon A Time

There was Kubernetes cluster.



This Cluster Had Nodes And Pods




ButPods Had Private TPs

How to route traffic to these pods? And between pods on
different nodes?
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Services Came To The Rescue

Thelr goal: Expose Pods to allow incoming traffic
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Services Are Load-Balancers

e Services have I-N Endpoints

e EndPoints are determined by Kubernetes API

—————————



https://kubernetes.io/docs/concepts/services-networking/service/#externalname

Different Kinds Of Services

for different communications use cases:

e From inside: type "ClusterIP" (default).

e From outside types "NodePort" and "LoadBalancer".



Services: Cluster]P

Virtual IP, private to the cluster, cluster)-wide (e.g. works from

any node to any other node)
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Services: NodePort

Uses public IPs and ports of the nodes, kind of "Routing grid"

Port 30500 I Port 30500 Port 30500




Services: LoadBalancer

Same as NodePort,excepts it requires (and uses) an external
Load Balancer.




Services Are Not Enough

e Context: Exposes externally a bunch of applications

e Challenge: overhead of allocation for LBs. For each
application:

= One LB resource (either a machine or a dedicated
appliance)

= At least one public IP
» DNS nightmare (think about the CNAMEs to create...)

s No centralization of certificates, logs, etc.



And Then Came The Ingress

Example with Traefik as Ingress Controller:
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Notes Aboul The Ingresses



Ingress Are Standard Kubernetes Applicalions

e Deployed as Pods (Deployment Or as DaemonSet)

e Exposed with a Service:
m You still need access from the outside

= But only one service to deal with (ideally)



Ingress Have Services Too
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Why Should T Care?

e SImplified Setup:
= Single entrypoint, less configuration, better measures
m | ess resources used

m Separation of concerns: differents algorithms for load
balancing, etc.



Why Challenges Does T Make?

e Designed for (simple) HTTP/HTTPS cases
s TCP/UDP can be used, but are not first-class citizens
= "Virtual Host First" centric

e Feels like you must carefully select your (only) Ingress
Controller



So What?

e Kubernetes gives you freedom:
= You can use multiple Ingress Controllers!
e Kubernetes gives you choices:

= SO mMuch deployment patterns that you can do almost
anything



Fxternal Load Balancers



Did You Just Say "External"?

e Outside the "Borders" of Kubernetes:
» Depends on your "platform" (as in infrastructure/cloud)
e Still Managed by Kubernetes (Automation)

» Requires "plugins" (operators/modules) per Load
Balancer provider

= No API or no Kubernetes support: requires switching to
NodePort



Tell Me Uour Kubernetes Distribution

..and I'll tell you which LB to use...



Cloud Managed Kubernetes

e Cloud providers provides thelr own external LBs
= Fully Automated Management with APIs
s Great UX due to the integration: works out of the box
m Benefits from cloud provider HA and performances
o But:
= YOou have to pay for this :)
s Configuration is cloud-specific (using annotations)

s Relies on LB implementation limits



Bare-Metal Kubernetes

Aka. "Run it on your boxes"
e Best approach: , @ Load Balancer implementation
for Kubernetes, hosted inside Kubernetes
s Uses all Kubernetes primitives (HA, deployment, etc.)
s Allows Layer 2 routing as well as BGP
s But... still not considered production ready
e Otherwise: external static (or legacy) LB

= Requires switching to NodePort Service


https://metallb.universe.tf/

Cloud "Semi-Managed" Kubernefes

e Depends on the compute provider: cloud or bare-metal

e YOU need a tool for mananaging clusters: kubeadm, kops,
etc.

= Most of these tools already manage LB If the provider
does.



Source TP On The Kingdom Of Kubernetes



Business Case: Source TP

As a business manager, | need my system to
know the IP of the emitters of the requests
to track usage, write access logs for legals
reasons and limit traffic in some cases.



NAT/DNAT/SNAT

e NAT stands for "Network Adress Translation"

m |Pv4 world: Routers "masquerades” |IPs, to allow routing
from different network

e DNAT stands for "Destination NAT"

m Masquerade of the destination |IP with the internal pod
1=

e SNAT stands for "Source NAT"

= Masqguerade of the source |P with the router’s IP
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Preserve Source TP

e Rule: We do NOT want SNAT to happen

e Challenge: many intermediate components can interfere
and SNAT the packets in our back!



Inside Kubernetes: Kube-Proxy

e kube—-proxy IS a Kubernetes component, running on each
worker hode

e Role: manage the virtual IPs used for Services

e Challenge with Source |IP: kube-proxy might SNAT requests
e SNAT by kube-proxy depends on the Service:

m Let's do a tour of Services Types!



Source TP With Service ClusterIP

e \When kube-proxy IS In "Iptables" mode: no SNAT v

" This Is the default mode

= No Intermediate component

. Node




Source IP With Service NodePort (Default)

e SNAT Isdone X (routing to the node where pod Is):
= First node to node routing through nodes network

= Then node to pod routing through pod network

‘ kube-proxy | Service NodePort




Source TP With Service NodePort (Local
Endpoint)

e No SNAT v with externalTrafficPolicy setto Local

e Downside: Dropped reguest If no pod on receiving node




Source IP With Service LoadBalancer
(Defaulh)

e Default: SNAT Isdone X, same as NodePort

s External Load Balancer can route to any node

m |f no local endpoint: Node to node routing with SNAT



Source TP With Service LoadBalancer
(Local Endpoint)

e However, No SNAT v for load balancers implementing
Local externalTrafficPolicy:

» GKE/GCE LB, Amazon NLB, etc.

= Nodes without local endpoints are removed from the
LB by failing healthchecks

» [[Pros: no dropped request from client view, but nodes
always ready

m [[ICons: relies on healthcheck timeouts



Alferndatives When SNAT Happen

e Sometimes, SNAT Is mandadatory
= External LB
= Network Constraint
m |[ngress Controller in the middle
e "Network Is based on layers" - let's use another layer:
m [T using HTTP, retrieve the Source IP from headers
s If using TCP/UDP, use the "Proxy Protocol"
= Or use distributed logging and tracing



HTTP Protocol Headers

e X—-Forwarded-From holds a comma-separated list of all the
source |IPs SNAT during all network hops.

= Vv If you have an External LoadBalancer or an Ingress
Controller supporting this header.

= /\ Not standard (header starting with x-) so not all
HTTP appliance might support It.

o Upcoming


https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded

Proxy Profocol

e Introduced by
e Happens at Layer 4 (Transport) for TCP/UDP

e Goal: "chain proxies / reverse-proxies without losing the
client information"

e Supported by a lot of appliances in 2019: AWS ELB, Traefik,
Apache, Nginx, Varnish, etc.

e Use Case: when SNAT happen AND not way to use HTTP. H


https://www.haproxy.com/blog/haproxy/proxy-protocol/

Disﬁibuﬁng Logging And Tracing

o /dea:

= Collect the source IP as soon as possible In distributed
[eleellgle

s Use distributed tracing to track the request In the
system

e [IPros: no more complex network setups, distributed
logging and tracing stacks are already on your Kubernetes
cluster (or will soon be)

e [ICons: relies on the distributed logging/tracing stacks



Use Cases



External Load Balancer With Traffic Policy

e [IPros: full automation

e BCons: depends on actual LB implementation
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Capturing Source IP From HTTP Headers

e [IPros: Simplified Setup
e KBCons: Only works with HTTP
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