
© 2 0 1 9 S P L U N K I N C .

Observability, RED
and Kubernetes
Adventures in Multi-Dimensional Observability

Dave McAllister, Technical Evangelist, Splunk
January 23rd, 2020

© 2 0 1 9 S P L U N K I N C .

“You see, but you do not observe.”
Sir Arthur Conan Doyle
A Scandal in Bohemia

© 2 0 1 9 S P L U N K I N C .

“You see, but you do not observe.”
Sir Arthur Conan Doyle
A Scandal in Bohemia

© 2 0 1 9 S P L U N K I N C .

Observability is a Signal to Noise Problem

Actually, it is Signals not Noise

RED provides a useful filtering approach

Compute and Storage

Observability

Operational Data

Filtering
Mode

Signals

Signals

Microservices Application

© 2 0 1 9 S P L U N K I N C .

A Brief View of Observability

TL;DR: Observability is a quality of software, services, platforms, or products that allows
us to understand how systems are behaving.

For Engineering purposes: Designing / defining the exposure of state variables in a
manner to allow inference of internal behavior

© 2 0 1 9 S P L U N K I N C .

Observability is Not One Dimensional
• Recall “Internal States Inferred from External Outputs”

• Observability is a property of the system—not a tool

• Should consist of logs, monitoring, events/tracing, and
anything else

• Should include elements of metrics and time

• Should cross boundaries
• Apps

• Services
• Disciplines

• Anything that slows you down is bad

© 2 0 1 9 S P L U N K I N C .

Observability Isn’t Just Monitoring

• A (system) attribute and a verb

• There aren’t just three pillars, there are many signals

• Metrics, logs, traces, events, errors, RPCs, core dumps,

profiling data. From apps, services, containers, infrastructure…

• You need signals you haven’t even thought of

• And they aren’t static

© 2 0 1 9 S P L U N K I N C .

Three Primary Pillars of Observability

Detect

Metrics
Do I have a Problem

Troubleshoot

Traces
Where is the Problem

Pinpoint

Logs
What is causing the problem?

© 2 0 1 9 S P L U N K I N C .

Logs and Metrics and Traces, oh my!

• Everything is an event

• Events only exist if recorded/measured

• Metrics are compact, efficient, but may not be sufficient (or complete)

• Logs/events are full fidelity, but relatively bulky at full capture

• Traces are cool, but require work (instrumentation) to establish

© 2 0 1 9 S P L U N K I N C .

World of Operations & App Development
Retain & Optimize Lift & Shift Re-Factor Re-Architect /

Cloud-Native

DEV OPS DEV OPS DEV OPS DEV OPS

Cloud Managed e.g. RDS,
DynamoDB, SaaS

Cloud First Architecture

Tightly Coupled Apps,
Slow Deployment Cycles

Primarily using
Cloud IaaS

More Modular, but
Dependent App Components

Loosely Coupled Microservices,
and Serverless Functions

VM VM VMVM VM VM VM VM VM

Private Public

VM VM VM VM VM VM

Private Public Private Public

© 2 0 1 9 S P L U N K I N C .

An architecture for building a continuously available distributed system
with a distributed development model

Sources: https://martinfowler.com/microservices/#what, https://articles.microservices.com/what-are-microservices-a-pragmatic-definition-1aa72839bc98

What a Microservices Architecture Looks Like

© 2 0 1 9 S P L U N K I N C .

Control Manager Scheduler

etcd

WORKER NODE

Kube-Proxy

POD

SignalFx
Smart Agent
Daemonset

Kubelet

API Server

WORKER NODE

Kube-Proxy

POD

SignalFx
Smart Agent
Daemonset

(Leader)

Kubelet

A Brief Look at Kubernetes
• Kubernetes orchestrates

computing, networking, and
storage infrastructure on behalf
of user workloads

• You describe your cluster’s
desired state using Kubernetes
API Objects

• What workloads to run

• What resources should it use

• How many replicas to keep running

• Kubernetes Control Plane then
works to make your Kubernetes
cluster match the desired state

• Starting/restarting containers

• Scaling the number of replicas

• Placing containers on the right node

© 2 0 1 9 S P L U N K I N C .

“Among all organizations using containers in production 68% use K8s”
– HEPTIO THE STATE OF K8S REPORT 2018

K8s Increases Ephemerality and High-Churn

• Multiple layers of abstraction to monitor:
containers, pods, clusters, nodes,
namespaces, etc.

• Container spin-up and down in seconds

• Dynamic workload placement

• Challenges with monitoring end-to-end
performance of distributed services

© 2 0 1 9 S P L U N K I N C .

Observability and the Loop Dilemma

• Duality of Observability is
Controllability

• The Telemetry is our inputs
• Logs
• Traces
• Metrics
• And more

• Loops can be open or closed

Even when it isn’t a loop

O
bservability C

on
tro

lla
bi

lit
y

Process/App

Telemetry Manual Automatic

© 2 0 1 9 S P L U N K I N C .

Why RED and Kubernetes

• Complexity matters
• Lots of moving items
• Lots of interrelations
• Lots of “Not there now”

• We need simplicity and abstraction to
resolve clutter

• We need to retain complexity for
“Gotchas” and “A-ha’s”

© 2 0 1 9 S P L U N K I N C .

So what is RED?

• A subset of Google’s golden signals (SRE-related)
• Originally mentioned by WeaveWorks (H/T Tom Wilkie)

• Made up of rate, errors, duration

• Designed for request-driven
systems, microservices

© 2 0 1 9 S P L U N K I N C .

Recognition of
Issues

&
Recognition of
Root Cause(s)

RED & the Need for Multi-dimensional Capacity
Observability = Monitoring at the “Chuck Norris” level

Rate

Errors

Duration

Metrics

Traces
Logs

© 2 0 1 9 S P L U N K I N C .

Rate

• Rate: number/size of requests on network

and system

• HTTP, SOAP, REST

• Middleware messaging/queuing

• API calls

• Overhead of control structures like service

meshes

• Any environment that can fail on peak

traffic is a target for rate monitoring

© 2 0 1 9 S P L U N K I N C .

A Rate Example

© 2 0 1 9 S P L U N K I N C .

Errors
• Errors: problems that cause an incorrect, incomplete

or unexpected result
• Code failures

• Production load bugs

• Peak load bugs

• Communication woes

• Errors need:
• Rapid Responses

• Point Specific responses

• Need deep dive, high-fidelity

• Need ASAP

© 2 0 1 9 S P L U N K I N C .

An Errors Example

© 2 0 1 9 S P L U N K I N C .

Duration

• It’s all about time

• Both client-side and server-sides are important
• But client side maybe more

• Usually (now) the domain and discussion of distributed request tracing

• Bring events into causal order: ▪ When was the event? How long did it take?
▪ How do I know it was slow?
▪ Why did it take so long?
▪ Which microservice was responsible?

© 2 0 1 9 S P L U N K I N C .

Duration Example

© 2 0 1 9 S P L U N K I N C .

Why RED?

• Easy to remember

• Reduces decision fatigue

• Drives standardization and consistency

• Helps with automation

• Serves as a proxy for user happiness

© 2 0 1 9 S P L U N K I N C .

Crossing the Streams

• Rate
• Error or slow consumer

• Errors
• Bandwidth limits or response time mismatch

• Duration
• No response, limits from infrastructure

It’s in the last place you look

© 2 0 1 9 S P L U N K I N C .

Challenges

• Traditional solutions have poor visualizations and are slow at scale

• Traditional solutions are hard to use

• Traditional solutions don’t allow easy disaggregation

So let’s take a look at how RED in monitoring can uncover a problem in microservices
under Kubernetes

© 2 0 1 9 S P L U N K I N C .

The Zen of Observability in Services

• Services observability has two perspectives on requests

• External (customer’s) view is singular
• Request, and its latency and success

• Operator’s view is over a workload
• Requests latency, rates, and concurrency
• System resources/ components

© 2 0 1 9 S P L U N K I N C .

Some Philosophy
• Instrumentation (by itself) is not an answer

• It may help find an answer

• Metrics are powerful but not solely sufficient
• Cardinality matters

• Observe the work, not the service
• But observe the service anyway and particularly how the service responds to the workload

• Your goal is not “observability” but reducing
• Mean time to detection
• Mean time to response
• Mean time to resolution

© 2 0 1 9 S P L U N K I N C .

Summary

• Observability is more than monitoring

• RED wins for µservices-based apps

• RED simplifies the observability of
Kubernetes while retaining insights

• Keep in mind that RED sections
interact in interesting ways

• Find the right tool to give you clarity
and insight

Thank You

© 2 0 2 0 S P L U N K I N C .

Dave McAllister – davemc@splunk.com

