
🖥 do.co/doks
 @maybeawg

20,000 Upgrades Later
Lessons From a Year of Managed Kubernetes Upgrades

Adam Wolfe Gordon
DigitalOcean

1

🖥 do.co/doks
 @maybeawg

This Talk Started One(ish) Year Ago...

2

Me, in Barcelona

DO, in Barcelona

🖥 do.co/doks
 @maybeawg

Generally Available?

3

UPGRADES!

🖥 do.co/doks
 @maybeawg

20,000 Upgrades Later

Adam Wolfe Gordon
DigitalOcean

5

Lessons From a Year of Managed Kubernetes Upgrades

🖥 do.co/doks
 @maybeawg

Disclaimers!

● Lessons from our upgrade process.
○ You might upgrade differently!

● Upgrades of our customers’ clusters.
○ Your workloads might be different!

6

🖥 do.co/doks
 @maybeawg

How to Upgrade Kubernetes

1. Upgrade the control plane.
2. Upgrade the worker nodes.
3. ???
4. Profit!

7

🖥 do.co/doks
 @maybeawg

How to Upgrade Kubernetes

1. Upgrade the control plane.
a. Update any resources that aren’t supported in the target version.
b. Upgrade etcd (if needed).
c. Upgrade kube-apiserver.
d. Upgrade kube-controller-manager.
e. Upgrade kube-scheduler.
f. Upgrade your CNI plugin (if needed).

g. Upgrade provider-specific components (e.g. cloud-controller-manager, CSI controller).
h. Upgrade kubelet and kubectl.

2. Upgrade the worker nodes.
a. Cordon and drain a worker node.
b. Update kubelet configuration (if needed).
c. Upgrade the kubelet.
d. Uncordon the node.
e. Repeat for each node in the cluster.

8

🖥 do.co/doks
 @maybeawg

Shortcut: Upgrade via Node Replacement

1. Upgrade the control plane.
a. Update any resources that aren’t supported in the target version.
b. Upgrade etcd (if needed). b. Destroy the original control plane node.
c. Upgrade kube-apiserver. c. Provision a new control plane node.
d. Upgrade kube-controller-manager.
e. Upgrade kube-scheduler.
f. Upgrade your CNI plugin (if needed).

g. Upgrade provider-specific components (e.g. cloud-controller-manager, CSI controller).
h. Upgrade kubelet and kubectl.

2. Upgrade the worker nodes.
a. Cordon and drain a worker node.
b. Update kubelet configuration (if needed).b. Destroy the node.
c. Upgrade the kubelet. c. Provision a new node.
d. Uncordon the node.
e. Repeat for each node in the cluster.

9

🖥 do.co/doks
 @maybeawg

Advantages of Node Replacement

● Clean slate - no chance for configuration drift.
● Fewer steps to manage - good for automation.
● Same process works for all release types.

○ (Mostly)

10

🖥 do.co/doks
 @maybeawg

11

Things We Got Right

Upgrades via Node Replacement

🖥 do.co/doks
 @maybeawg

Problems
Ch-ch-changes

● Custom node configuration is reset.
● Node names change.
● Node IPs change.
● Node labels and taints lost.

12

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Managing Change

● Re-use node names and IPs if possible.
● Retain labels or provide a good alternative.
● Retain taints or provide a good alternative.
● Provide simple ingress/load balancing.

13

🖥 do.co/doks
 @maybeawg

Lessons for Developers
Tolerating Change

● Use Kubernetes to do node customization.
○ DaemonSets
○ Init containers

● Don’t use node names for scheduling.
● Use provider-supported label/taint settings.
● Use provider-supported load balancing.

14

🖥 do.co/doks
 @maybeawg

15

Things We Got Wrong

Break Before Make

🖥 do.co/doks
 @maybeawg

Problems
Drain to Nowhere

● Insufficient capacity to drain nodes.
● Downtime in single-node clusters.
● Extra churn for workloads.

○ Might be drained to a node that’s about to be deleted.

16

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Drainage Capacity

● Add nodes before deleting nodes if possible.
● Consider reserving capacity.

17

🖥 do.co/doks
 @maybeawg

Lessons for Developers
Expect to be Drained

● Leave capacity for a node to be drained.

18

🖥 do.co/doks
 @maybeawg

19

Things We Got Wrong

Replacing Nodes One by One

🖥 do.co/doks
 @maybeawg

Problems
Ants Go Marching

● Replacing nodes one-by-one is slow.
● Workloads can get stuck draining

○ Making replacement even slower.

● Upgrades need to be expedient.

20

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Rapid Replacement

● Drain and replace multiple nodes at once.
○ This usually requires make-before-break.

● Set reasonable drain timeouts.

21

🖥 do.co/doks
 @maybeawg

Lessons for Developers
Unclog Your Drains

● Make sure your workloads can be evicted.
○ Safely: Use PodDisruptionBudgets.
○ Quickly: Respond to signals.

● Test this!

22

🖥 do.co/doks
 @maybeawg

23

Things We Got Wrong (but felt so right)

Minor Version Upgrades are Easy

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Don’t Worry, Be Happy

● Minor version upgrades aren’t that scary.
● Try to use the same process for all upgrades.

24

🖥 do.co/doks
 @maybeawg

25

Things We Got Right

Disabling Alpha Features

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Wait for Beta

● Alpha features are disabled by default.
● Alpha features are likely to change/break.
● Beta features are less likely to change.
● Consider the upgrade tradeoff.

26

🖥 do.co/doks
 @maybeawg

Lessons for Developers
Alpha as a Last Resort

● Avoid using alpha features if possible.
● Read release notes before upgrading.

27

🖥 do.co/doks
 @maybeawg

28

Common Problems

Container Storage Interface (CSI)

🖥 do.co/doks
 @maybeawg

CSI Problems
Beta

● CSI was promoted to beta in Kubernetes 1.10.
● Supporting components were relatively new.
● CSI drivers were relatively new.
● Out-of-sync state.
● Far fewer problems in recent releases.

29

🖥 do.co/doks
 @maybeawg

CSI Problems
Driver Names

● In early CSI specs, com.example.csi.
● In later CSI specs, csi.example.com.
● The name is immutable in Kubernetes!
● Solution: detect and persist old naming.

30

🖥 do.co/doks
 @maybeawg

Lessons
Beware the CSI

● If you’re using CSI, carefully test upgrades.
● Watch for workloads that get stuck.
● Use Kubernetes 1.14+ if possible.

31

🖥 do.co/doks
 @maybeawg

32

Common Problems

Admission Control Webhooks

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks Overview

33

https://app.lucidchart.com/documents/edit/0d5a7a7e-43c8-4aff-ae29-de8a560d9a69/0&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=507&s=475.91149606299206

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks Overview

34

https://app.lucidchart.com/documents/edit/2ca0a64a-6344-49bf-9476-6486488e1a29/0?callback=close&name=slides&callback_type=back&v=133&s=720

🖥 do.co/doks
 @maybeawg

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 30
 failurePolicy: Ignore

Admission Control Webhooks Overview

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 30
 failurePolicy: Fail

35

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks
Trouble for Upgrades

● Upgrades update system components.
● Some of these components run as workloads.

○ Usually in the kube-system namespace.

● Webhooks can prevent these updates.
● Webhooks can also affect their own services!

36

🖥 do.co/doks
 @maybeawg

webhook-service kube-proxy cilium

Admission Control Webhooks: Problems

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 30
 failurePolicy: Fail

37

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks: Solutions

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 30
 failurePolicy: Ignore

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks: Solutions

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 5
 failurePolicy: Ignore

🖥 do.co/doks
 @maybeawg

Admission Control Webhooks: Solutions

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: webhook.example.com
webhooks:
- name: webhook.example.com
 namespaceSelector:
 matchExpressions:
 - key: system-critical
 operator: DoesNotExist
...
 clientConfig:
 service:
 namespace: "webhook-namespace"
 name: "webhook-service"
 admissionReviewVersions: ["v1", "v1beta1"]
 sideEffects: None
 timeoutSeconds: 5
 failurePolicy: Fail

🖥 do.co/doks
 @maybeawg

Lessons for Operators
Webhooks are Trouble

● Check webhook config before upgrading.
● Consider a mutating webhook for webhooks.

41

🖥 do.co/doks
 @maybeawg

Lessons for Developers
Be Careful with Webhooks

● Set failurePolicy to Ignore if possible.
● Set timeout much lower than 30 seconds.
● Exclude kube-system.
● Exclude the webhook service’s namespace.

○ Or run the webhook service outside the cluster.

● Exclude any other critical namespaces.

42

🖥 do.co/doks
 @maybeawg

Wrap Up

● Consider upgrading via node replacement.
○ Retain node names and IP addresses if you can.
○ Workloads should assume that nodes will go away.
○ Create new nodes before destroying old ones, if possible.

● Make sure your workloads can be evicted.
● Upgrade more than one node at a time if possible.
● Minor version upgrades are easier than you think.

○ Especially if you avoid alpha features.

● CSI is just now becoming mature - take special care when upgrading.
● Admission control webhooks are all kinds of trouble.

○ Check your targets.
○ Check your failure policies.
○ Check your timeouts.

43

🖥 do.co/doks
 @maybeawg

Questions?

Adam Wolfe Gordon
awg@do.co

