
Serverless Operations

Soam Vasani

fission.io

http://fission.io

Fission: Serverless Functions

• Open source Kubernetes-native FaaS framework

• Lambda-like service both on-premise and in the cloud

• Designed to be easy to use, productive and fast

• Tunable cost/performance tradeoffs

Why Serverless

• Developer productivity: focus on application code

• Pay for what you use, idle = free

• Will occupy an important part of the software stack in the future

• On-premise benefits!

Production-ready Serverless Apps

• Serverless will exist in various forms in modern infrastructure

• FaaS in the cloud and on-premise

• As cloud services (Lambda etc) and on Kubernetes

• We want the productivity advantages — but we want to go faster, safely
and at scale

The DevOps Pipeline
pre-merge checks

build, packaging

validate, approve

ensure uptime

deploy to production

staging

Dev
changes

End
User

Serverless Operations from Dev to Production
Some best practices and patterns:

1. Declarative configuration

2. Live-reload for fast feedback

3. Record-replay for testing and debugging

4. Canary Deployments

5. Monitoring with metrics and tracing

6. Cost optimization

1

Specifying Applications
Spoiler Alert: Use declarative configuration!

Specifying Apps: Declarative Config

• Specify app source, packaging, and configuration as a series of
configuration files, rather than imperative scripts

• Imperative: “Copy this file there and run it”

• Declarative: “Ensure this file exists and that it’s running”

Benefits of Declarative Config
• Now that we’ve specified our app declaratively, we can:

• Do better validation before deploys

• Do one-click deploys

• Deploy without worrying about current state of the cluster: the system will
find differences and reconcile them. Great for upgrades!

• Version everything in Git: Collaborate, auto-deploy, rollback. “Gitops”

• Watch files and “live-test” your code

Declarative Config in Fission

• Fission resources (Functions, Environments, Triggers) are Kubernetes
Custom Resources (CRDs), so they can be stored as YAML/JSON files

• Fission automatically generates initial config: Never write YAML from
scratch

• `fission function create --spec …`

• Also specify packaging: how local files get packaged and uploaded

Deploying with Declarative Config
• `fission spec validate`

• Checks for consistency and common errors

• `fission spec apply`

1. Packages source code

2. Uploads to cluster

3. Builds, gathers dependencies (if necessary)

4. Creates/Upgrades/Deletes Fission Kubernetes resources

2

Live-Reload
Fast feedback means fewer bugs

Live-reload: Test as You Type

• The sooner you find the problem, cheaper it is to fix

• Accelerating feedback loops improves quality

• “Live-reload” means code is instantly deployed into a test system as soon
the developer is saving their files

• Instant feedback on whether the change is correct

Live-reload in Fission
• `fission spec apply --watch`

• Save your file, fission deploys it to a test cluster automatically within 1-5
seconds

• Because you’re testing on a real cluster, you can mimic your real
deployment more closely

• This gives you very quick feedback on whether your changes are correct

3

Record-Replay
Reproducing bugs is the easiest way to get them fixed

Record-Replay

• Record-replay is a technique for saving the events that invoked a function
and simulating these events at a later point for testing or debugging

• Testing: Replay a request to test if a new version of a function behaves
like the old one: regression testing

• Debugging: Inspect execution of a function on a past input

Record-Replay Use Cases

• Dev can use Recording during testing to make sure we can reproduce a
failure

• Ops can enable recording on a subset of production traffic, to enable
devs to reproduce problems, debug them, and verify updated versions

Record-Replay in Fission

• Fission has built-in record-replay, which can store HTTP requests and
responses, and replay on demand

• Fission lets you create “recorder” resources for functions, which configure
what is recorded and how long it’s retained

• Replay requests on demand, either on a new version or with a debugger
on the old version

4

Canary Deployments
Reduce risk by slow, careful roll out of new versions

Reducing the Risk of Failed Deployments

• After all testing is done, deployment to production is still risky

• Test and Staging environments are never quite the same as production

• After a version is qualified in testing, a good strategy is to deploy
incrementally

• For example, 10% of your users get the new version, and if all goes well
you gradually increase that percentage.

Canary Deployments
• Let’s say we have version V1 deployed

• We’ve tested version V2 and are ok
with it in testing

• Now we deploy version V2 but only
send 20% of users to it

• This is a canary deployment — we
proceed with the rollout only if the
new version works well on the 20%

Automating Canary Deployments

• With Canary Deployments you have to monitor for success of the canary,
and decide whether to go ahead with the deployment

• In a FaaS system, we know whether a function succeeded or failed

• We can automate the process of rolling forward or rolling back

Automated Canaries in Fission
• Fission has built-in automated canary deployments. They can be

configured with:

• The fraction of traffic for the new version

• The error rate that we call a failure

• The rate at which to “grow” the new version as long as it’s succeeding

• The function is rolled back at any point if it does not succeed

Traffic Graph in Canary Deployments

5

Metrics, Tracing, Logs, Alerts
Understand your systems performance

Monitoring Serverless Systems
• Many aspects: logs, metrics, alerts, tracing

• Log Aggregation using fluentd — save them somewhere searchable (e.g.
Elastic stack)

• Metrics: Use Prometheus

• Prometheus has Alertmanager which can be used for alerts based on
metrics

• Tracing: Use Jaeger or other OpenTracing implementations

Fission Metrics
• Fission automatically tracks timing and success rate metrics for all

functions

• Function run time, fission overheads, error codes

• Fission has Prometheus integration for metrics collection

• You can build dashboards with Grafana, and alerts with Prometheus
Alertmanager

6

Cost Optimization
Balance performance and cost in the cloud and the datacenter

Cost Optimization

• Most systems have cost/performance tradeoffs

• Public cloud serverless lets you pay for what you use, though the
tradeoffs get worse as usage gets higher

• In the on-premise you still care about utilization — resources used should
be proportional to actual demand, so they are available for other services
that may need them

Cost Optimization
• Big topic!

• On public cloud, clever use of Reserved Instances, cheaper Spot/Pre-
emptible Instances can yield significant savings

• Careful configuration of resource limits for applications in a cluster

• On all infrastructures, autoscaling can make clusters more efficient —
growing resource utilization only when there is demand and shrinking it
otherwise

The Cold-Start Problem

• Ideally, services with zero usage should be free

• But services should be able to start quickly when there is demand for
them

• This is the cold-start problem: how do we ensure low idle costs while
simultaneously providing low latency?

Cold Starts in Fission
• Built-in cold-start optimization: use a pool of pre-warmed containers

• Pool size can be configured; the cost of the pool is amortized over all
functions in the cluster

• When they are invoked, functions are loaded into a container from the
pool

• Functions can also be configured not to use a pool at all, slowing them
down but further reducing cost

Cost Optimizations in Fission

• Function execution is tunable: choose a point on the cost/performance
tradeoffs

• Not subject to lambda pricing model — can be as cheap as the cheapest
VM instance (RI, spot etc.)

• On-premise usage can be a cost savings, especially if you have existing
infra

Cost Optimizations in Fission

• Configure CPU and memory resource usage limits for functions

• Configure autoscaling parameters: min and max scale, target CPU
utilization

Demo!
• Hello, world

• Declarative config

• Live reloads

• Record-replay

• Canary deployments — we’ll also metrics in prometheus

Get Started with Fission

Get Started with Fission

Get Started with Fission

HTTP, NATS, Kafka,
Azure Storage Queues,
Kubernetes Watches,

Timers, …

NodeJS, Python, Go, Ruby, C#, PHP, Bash, Perl, Java

Get Started with Fission

Get Started with Fission
• Visit: fission.io

• github.com/fission/fission — see milestones for upcoming features

• Install latest release 0.10: docs.fission.io/latest/installation/

• Canaries coming in Fission 0.11

• Slack: slack.fission.io — Ask us anything!

• Twitter: @fissionio

http://fission.io
http://github.com/fission/fission
https://docs.fission.io/latest/installation/
http://slack.fission.io

