
 Building a Culture of Observability
Within your Organization

CNCF Webinar Series - May 7
Grant Schofield - Humio

Greetings.

Who am I?

https://humio.com

https://humio.com

Overview

What is observability?
Observability’s Past, Present, and Future
How can my organization make their
systems observable?

What Observability isn’t….

New concept
Monitoring
A tool or product
Just your operations team’s concern

Observability is…
The intersection systems, applications, and users

An attribute of a system than encompasses many
others such as: functionality, performance,
testability, maintainability, monitorability

The ability to know how your system is working
from the outside and being able to contextualize
any events within

Observability is…(to me)

Having the right systems, and implementation,
to know how your system is feeling about any
request

Having the ability to know why the needle is
oriented a particular way in the haystack
Having what I need, as an engineer, to debug
a problem with minimal steps

Most importantly..

A cultural facet of your organization, like DevOps

Responsibility of everyone in the organization

Different for every organization

The Past

Control Theory
Control theory in control systems engineering is a
subfield of mathematics that deals with the control
of continuously operating dynamical systems in
engineered processes and machines. The
objective is to develop a control model for
controlling such systems using a control action in
an optimum manner without delay or
overshoot and ensuring control stability.

Rudolf E. Kálmán

In control theory, observability is a measure of
how well internal states of a system can be
inferred from knowledge of its external outputs.
The observability and controllability of a system
are mathematical duals.

Kálmán’s ground breaking work in the 50s and 60s that, lead
to Kálmán filters, was used by Nasa for the Apollo and
shuttle programs as well as a vast array of other applications.

Observing Systems of the Past
SaaS didn’t exist, built everything

Basic Open-source Software - Big Brother, RRDTool,
MRTG, Cacti, NetSaint (Nagios)

Expensive (ugly) Enterprise tools - HP Openview, CA, etc

Script everything, or die trying

CREAM - Cron Rules Everything Around Me

World ran on rsync

What did we build?

Questionable Bash and Perl execed via Cron to feed Big Brother

Monitoring

Do sysadmins have
VRML colored dreams?

Metrics - Mostly RRDTool Based

Rub more Perl in it

Things improved with Cacti

Were our systems
observable?

Kind of?

Intuition

Limiting Factors
Cost of storage
Cost of compute
Grepping lots of logs
No TSDBs or NoSQL - Filesystems and RDBMSs
No context from previous failures except
gzipped collections of logs and MRTG graphs
maybe screenshots

Limiting Factors
Your sysadmins problem
Not quite configuration management
Awful technologies (SNMP)
Mostly statically generated assets from logs
Tools were macro world view

Sysadmin Squad Goals of Yore
Not letting engineers access production
Having monitoring at all
Getting alerted reliably
Avoiding breaking things
Uptime, preferably 5 Nines
Cross training, teaching intuition

The Present

A lot.15 Years of Moore’s Law

CloudSSD

DevOps

SaaS

NoSQL APM

Schedulers

Microservices

Docker

CNCF

Azure
Log

Management
VMs

Rest

GCP

TSDBs

Open-source
Distributed Systems

Grafana SRE

Containers Containers
SDN

(Kubernetes)

AWS

Key Factors Driving
Observability’s Adoption

Democratization of technology (DBs, Log aggregation,
VMs)
Tradeoffs are much different today
Monitoring is about predicting failure, harder to predict
today due to the complexity
Clouds are ephemeral
Microservices

Key Factors Driving
Observability’s Adoption

Multi-Region / Multi-cloud concerns
Complexity has increased exponentially
Monitoring and metrics systems are far more
advanced, less brittle, many times built in
Many more disparate systems / APIs (internal and
external)
Scale has increased dramatically for even simple
applications

4 Pillars of Observability

Metrics

UX (Alerting/ Visualization)

Logging
Distributed Tracing

Metrics
Choose your own adventure, there are so
many to choose from, beware of cardinality
concerns (don’t tag metrics with UUIDs)
More predictable overhead than logs
Lower integration costs for applications than
in the past, usually just a library or API call
You don’t always know what metrics you need

Logs
Contextualizes the lifecycle of a requests
The least standardized component of most
environments
Generation is the easy part, storing is not
Finite amount
Sampling for the long term if necessary

Distributed Tracing
Newest component to modern infrastructure
Correlation IDs are a good place to start
UI not required, but more valuable if you do
Not APM
Difficult to retrofit unless you use a service
mesh
Requires engineering wide adoption

Alerting / Monitoring / UX
Alert fatigue, make actionable alerts, not just
your SREs
Alerts must include context
The solution is never, simply, to make a alert
and dashboard for X thing
Duplication and one-off dashboards
Manage the entire stack with configuration
management

Current Groundwork
Engineers want APMish things
The rise of SaaS Infrastructure
Companies…… Scaling is Hard
Log aggregation (at scale) is easier: Humio,
ELK, SaaS
Many more options than the past

Current Groundwork
Open and closed source options abound

OpenTracing

Systems capable of high throughput and
ability to query data that has high
cardinality

Integration of disparate systems simpler

How can I make my
systems observable?

Start with Empathy for the User
The end goal is to make the best user experience
possible

Users don’t care about your CPU Load

Users care about errors and latency

All of your observability goals should be focused on
answering questions about end user experience

How?
Gather as much data as you can from any path a user
takes and align the context from disparate systems
around individual users / geographies (CDNs, Load
Balancers, etc)

Instrument your clients focusing on key experiences
in your applications as well as basic interactions such
as DNS

How?
Adopt a DevOps approach in your organization with
observability concerns

Standardize your engineering organizations
requirements for observability, give engineers a carrot

Your goals will be congruent with other departments
such as business and marketing

Don’t keep it a secret

New Approaches to Consider

AI / Machine Learning
Adopting stream processing infrastructure
Chaos Engineering
Testing in production
Sampling

Challenges
Percentiles are misleading at scale

Log amounts and sizes will increase

Scaling and spiky work loads

Complexity of tools when self managed

Many, especially edge, integrations are asynchronous

Challenges
Shoehorning into existing tools can lead to technical debt,
substandard solutions

SaaS Cost at Scale

SaaS / Application Lock-in

Once SaaS cost is an issue, so is rolling your own

Not adopting standard approaches in your organization

Challenges
Intuition is still a powerful, necessary, tool

Uptime and MTTR are important, quality user
experience encompasses both

Uptime is easier to come by than ever before

Best Practices
Not one size fits all, or even many, be mindful of your
specific tradeoffs

Integrate systems, such as your CRM, Zendesk, etc for
additional context

Balance cost and usage tradeoffs

Have your observability config live with your application
code, deploy it with your CD system, bonus points for CI

Best Practices
Start small, one application end to end
Maximize context at every step of your request
path
Be wary edge aggregation, you lose context
Canary deployments that are easy to see in your
UX, handles real (your) user traffic
Developers on call

The Future

The next 10 Years
Cheaper, faster, better systems and clouds

Less complexity to the tooling

Less tool sprawl

Less SaaS

More real-time

Streaming native infrastructure, less HTTP APIs, log
shipping

The next 10 Years
Observability Engineers and Orgs

Users are first class concerns for engineers

Sample on and off dynamically, by user?

Synchronous Edge Observability

Making everything observable, your team, your
repos, etc will be commonplace

Building Your
Observability Culture

It’s never over, there are always new questions

Promote the power of the ethos outside of
engineering

Use context from your business to inform your
focus on what is important to observe

Your observability will provide business value,
push it up and out

Building Your
Observability Culture

Foster a culture of accountability, you own your uptime
and errors, as an organization

Empower engineers to make it easy to input and utilize
the data, everyone instruments

Make it easy for first time users to take actionable
measures

Culture of empathy for users, and each other

Brian Knox, Digital Ocean:
The goal of an Observability team is
not to collect logs, metrics, or
traces. It is to build a culture of
engineering based on facts and
feedback, and then spread that
culture within the broader
organization.

Acknowledgements
The Infrastructure Team at Vevo

Humio @meethumio (https://humio.com)

Cindy Sridharan, Apple, @copyconstruct
(https://medium.com/@copyconstruct)

Charity Majors et. all, honeycomb.io
@mipsytipsy

https://humio.com
https://medium.com/@copyconstruct
http://honeycomb.io

Visit us at Kubecon EU at
Booth #SE54
Try Humio for Free

https://humio.com/getting-started
30 Day Free Trial - Free Cloud Tier

https://humio.com/getting-started

Thank you!
@schofield - grant@humio.com

mailto:grant@humio.com

Notes and Sources
https://www.humio.com/chaos-observability
https://distributed-systems-observability-ebook.humio.com/

https://medium.com/humio/data-driven-observabilty-
logs-52e98e27a83b

https://distributed-systems-observability-ebook.humio.com/

https://www.honeycomb.io/resources/white-papers/

RRDTool https://calomel.org/rrdtool.html

Cacti - Many google image searches

https://en.wikipedia.org/wiki/Control_theory

https://www.vividcortex.com/blog/monitoring-isnt-observability

https://www.humio.com/chaos-observability
https://distributed-systems-observability-ebook.humio.com/
https://medium.com/humio/data-driven-observabilty-logs-52e98e27a83b
https://medium.com/humio/data-driven-observabilty-logs-52e98e27a83b
https://calomel.org/rrdtool.html
https://en.wikipedia.org/wiki/Control_theory

