
CNCF Webinar Series

Kubernetes Security Controls and Enforcement:
Applying Lessons from the K8s Security Audit
Connor Gilbert
12 November 2019

2©2019 StackRox. All rights reserved.

Connor Gilbert
Senior Product Manager, StackRox
Used to be an engineer

- Stumbled into Kubernetes in 2015
- Introduced it to one company
- Started building container and

Kubernetes security products after that

Who’s this?

3©2019 StackRox. All rights reserved.

• What happened in the security audit?
• The process
• Key takeaways
• Selected results

• Native K8s controls you can leverage
• Shared responsibilities
• What’s new? What’s not?
• Default configs vs. ideal configs

• How to design a K8s-native security strategy
• Enforce security controls and practices...
• ...without sacrificing velocity

Coming up

4©2019 StackRox. All rights reserved.

What happened in the security audit?

5©2019 StackRox. All rights reserved.

• Threat model: describes key K8s
components and how effectively they
are secured

• Security report: focuses on K8s internal
product security

Security audit reports

• Whitepaper: explains important
aspects of K8s’ design, recommends
actions for ops and dev

• Threat guide: how to secure or attack a
K8s cluster

Total: 241 pages

6©2019 StackRox. All rights reserved.

• Security Audit Working Group solicited proposals and selected a winning bid
• Assessment conducted March–May 2019, based on K8s 1.13.4
• Results released in August 2019

Security audit logistics

7©2019 StackRox. All rights reserved.

Security audit context

• CNCF has sponsored similar audits of other projects, including:
• CoreDNS
• Envoy
• Prometheus

• Unusually open compared to typical audits of commercial products
• All security findings released publicly (see issue #81146 on GitHub)

https://github.com/kubernetes/kubernetes/issues/81146

8©2019 StackRox. All rights reserved.

• The Kubernetes project and CNCF are investing in product security
• The security audit identified a number of security issues in specific K8s components

• Severities range from Informational to High
• Improvements recommended in various areas
• GitHub issues are filed for each issue
• Some issues have been fixed

• Configuring K8s can be complex
• To be secure, you need to take steps to protect your infrastructure and applications

Key takeaways from the security audit

9©2019 StackRox. All rights reserved.

The assessment team found configuration and
deployment of Kubernetes to be non-trivial, with
certain components having confusing default
settings, missing operational controls, and implicitly
defined security controls.

Overall, Kubernetes is a
large system with
significant operational
complexity.

Product security findings: overall

Also, the state of the Kubernetes codebase has significant room for improvement.
The codebase is large and complex, with large sections of code containing minimal
documentation and numerous dependencies, including systems external to
Kubernetes.

Kubernetes Security Assessment, Trail of Bits, p. 5

10©2019 StackRox. All rights reserved.For current status, see issue #81146 on GitHub.

Parsing problems
User input handlers
could overflow or run
out of memory
(TOB-K8S-015, TOB-K8S-019,
TOB-K8S-020)

Product security findings: themes

Info leaks
- Verbose logs (TOB-K8S-001)

- CoreDNS zone transfer
(TOB-K8S-032)

- Sensitive host env vars
(TOB-K8S-005)

Feature requests
Areas for improvement:
- Seccomp (TOB-K8S-002)

- TLS cert revocation
(TOB-K8S-028)

Dangerous designs
Features are working as
expected, but can be
abused, e.g. readiness
and liveness probes.
(TOB-K8S-024)

Insecure deprecated
features
- Insecure SSH tunnels

(TOB-K8S-012)

- Passwords in clear text
(ATR-K8S-002)

Documentation
Recommended edits:
- Encryption settings
- PVCs don’t enforce

PSP host-path limits
(TOB-K8S-038)

https://github.com/kubernetes/kubernetes/issues/81146

11©2019 StackRox. All rights reserved.

Native K8s controls you can leverage

12©2019 StackRox. All rights reserved.

Background: shared responsibility

Infrastructure

Application
Operations

Application
Development

Security
Managed

Service
Compliance

Risk

13©2019 StackRox. All rights reserved.

Node configs

Background: security surface

Kubernetes
API access

Application
security

Deployment
configs

Microservice
interactions

Security
configs

Monitoring

14©2019 StackRox. All rights reserved.

Threats
• Apps: On the Internet, nobody knows you’re a dog running in a container
• Infrastructure: You have a new, powerful API surface to protect

Security workflows
• Apps:

• Deployed using immutable SHA256 identifiers
• Configured with declarative specifications
• Not messed with manually—much less “I’ll just SSH in”
• Built to be failure-tolerant

• Infrastructure:
• Central place to configure many important security configurations
• Software-defined everything™
• A critical foundation, but now more strictly separated from apps

What’s different? What’s the same?

15©2019 StackRox. All rights reserved.

API and infrastructure security

• Network access to API server
• cf. Billion Laughs (CVE-2019-11253)

• RBAC (covered later)
• Access control for nodes
• Standard Linux node hardening

• Advantage: limited-purposes, cookie-cutter nodes

While Kubernetes facilitates high-availability workload deployments, the underlying
hosts, components, and environment of a Kubernetes cluster must be configured and
managed. This management has a direct impact on the capabilities of the cluster,
and affects the behavior of an operator’s composed objects.
Kubernetes Security Whitepaper, Trail of Bits, p. 5

16©2019 StackRox. All rights reserved.

Pods

Often, compromising a Kubernetes cluster begins with first compromising a lower
privileged Pod. The secure configuration of Pods is an often-overlooked aspect of the
system.
Attacking Kubernetes, Atredis Partners, p. 46

Job #1
Keep adversaries out.

Job #2
Keep them in one place.

17©2019 StackRox. All rights reserved.

These settings also have conflicting usage semantics,
where some use either opt-in or opt-out
specifications. The conflicting usage generally boils
down to the preservation of backwards compatibility
for both workload and component configurations.

Kubernetes contains
many default settings
which negatively impact
the security posture of a
cluster.

Defaults aren’t enough

Ensuring appropriate configuration of all options requires significant attention by
cluster administrators and operators.

Kubernetes Security Whitepaper, Trail of Bits, p. 17

18©2019 StackRox. All rights reserved.

Image security

Attacking Kubernetes, Atredis Partners, p. 46

File systems also often contain bash or package managers that further enable an
attacker to gain a shell and install additional tools. An ideal installation should
remove all non-essential binaries and prevent modification to the binaries that are
required.

For cluster administrators, care should be taken that vulnerable applications and
Pods are patched as soon as possible, so that Internal Attackers may not gain an
initial foothold within the cluster.

19©2019 StackRox. All rights reserved.

Deploy-phase controls: RBAC consequences

Attacking Kubernetes, Atredis Partners, pp. 14-15, 23

All containers in a Pod run with a service account. … Attack scenarios have been
documented against third-party services which will orchestrate Pod deployment using
overly permissive service accounts. In these instances, a compromise of a Pod
container is catastrophic.

...however, they may not yield much access when using role-based access control
(RBAC) authorization controls.

At the time of this report, Kubernetes mounted default credentials in every Pod; an
Internal Attacker could use these credentials to access other resources within the
cluster, such as the kublet (sic). From there, the Internal Attacker may be able to move
laterally throughout the cluster to wider access.

20©2019 StackRox. All rights reserved.

Deploy-phase controls: RBAC difficulties

[Objects] can be composed by referencing objects that may not yet exist.
Additionally, objects can be created even if the component using the object does not
exist. This functionality can be very dangerous when constructing RBAC policies,
since functionality must be tested to ensure the configuration works in the expected
manner. This could lead an administrator to believe that policies are in effect, when
in fact they are not.

Kubernetes Security Whitepaper, Trail of Bits, p. 16

21©2019 StackRox. All rights reserved.

Deploy-phase controls: RBAC background

Role
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: use-psp
rules:
- apiGroups: ['policy']
 resources: ['podsecuritypolicies']
 verbs: ['use']
 resourceNames:
 - policy1

Role Binding

+

= Access

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: <binding name>
roleRef:
 kind: ClusterRole
 name: use-psp
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: <sa>
 name: <sa namespace>

22©2019 StackRox. All rights reserved.

• cluster-admin considered harmful
• Use role aggregation carefully
• Grant each role with exactly one binding
• Clean up unused roles and bindings
• Avoid “dangling bindings” to deleted roles

⚠ None of this matters if the legacy Attribute-Based Access Control (ABAC) controller is
still enabled.

Deploy-phase controls: RBAC best practices

23©2019 StackRox. All rights reserved.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-deploy
 labels:
 tier: backend
 namespace: my-team-ns
spec:
...

Deploy-phase controls: Namespaces

Kubernetes namespaces were developed as a
method to help provide workload isolation.
Running multiple, potentially multi-tenant,
workloads in the same namespace sidesteps the
protections of namespaces, resulting in a single
large and flat namespace.
Kubernetes Security Whitepaper, Trail of Bits, p. 9

24©2019 StackRox. All rights reserved.

Deploy-phase controls: Namespaces

• Network policies
• RBAC
• Ability to mount secrets
• Use of image pull secrets
• And other boundaries

✖ ✅

25©2019 StackRox. All rights reserved.

Deploy-phase controls: Read-only root file system

[The] root file system is not
commonly read-only, allowing for
additional tools to be installed.
Attacking Kubernetes, Atredis Partners, p. 46

apiVersion: apps/v1
kind: Deployment
...
spec:
 template:
 ...
 spec:
 containers:
 - name: my-container
 ...
 securityContext:
 capabilities:
 drop: ["NET_RAW"]
 readOnlyRootFilesystem: true

Need a writable path?
- Add a VOLUME Dockerfile

instruction
- Mount a K8s emptyDir

volume (CRI-O doesn’t make
VOLUMEs writable)

26©2019 StackRox. All rights reserved.

Deploy-phase controls: Network policies

Finally, ensure the container network interface is as restrictive as possible through
the definition of cluster network policies.
Kubernetes Security Whitepaper, Trail of Bits, p. 17

By default, every pod can talk to every other pod.

To change this, apply a network policy. Network restrictions are enforced for a given
pod only when that pod has a policy applied to it.

27©2019 StackRox. All rights reserved.

Deploy-phase controls: Network policies

28©2019 StackRox. All rights reserved.

How to design a K8s-native security strategy

29©2019 StackRox. All rights reserved.

Additionally, Kubernetes takes steps to help cluster administrators harden and
secure their clusters through features such as Role Based Access Controls (RBAC) and
various policies which extend the RBAC controls.

Despite the results of the assessment and the operational complexity of the
underlying cluster components, Kubernetes streamlines difficult tasks related to
maintaining and operating cluster workloads such as deployments, replication, and
storage management.

The opportunity we have

Kubernetes Security Assessment, Trail of Bits, p. 6

Continued development of these security features, and further refinement of best
practices and sane defaults will lead the Kubernetes project towards a
secure-by-default configuration.

30©2019 StackRox. All rights reserved.

The opportunity we have

31©2019 StackRox. All rights reserved.

Enforcement options

Pod Security Policy
• Native up-front config
• Uses RBAC identities
• Controls privileges,

host mounts, and other
settings

Dynamic admission
controller
• Requires deployment
• Can consider any

data—the sky (and API
timeout) is the limit!

Ongoing monitoring
and analysis
• Gives the benefit of

hindsight
• Doesn’t block progress
• But, it’s reactive

⚠ Remember the user experience when choosing:
- what to enforce, and
- where to enforce it.

Don’t be a bottleneck and don’t cry “wolf”.

32©2019 StackRox. All rights reserved.

• Start with the easy stuff that helps everyone
• Annotate and label deployments consistently
• Use concrete image tags (not latest)
• Start scanning images for low-hanging fruit

How to get started

• Continue with other self-contained changes
• Limit network access to the K8s API server
• Start disabling automatic service account mount
• Replace your cluster admins with scoped access

• Work on cross-functional changes app-by-app
• Try a read-only root file system for stateless services
• Make sure resource requirements are specified
• Add ingress network policies to sensitive deployments (then all)

• Keep going!

33©2019 StackRox. All rights reserved.

Conclusion

34©2019 StackRox. All rights reserved.

Recap

• The Kubernetes security audit identified a number of improvements for Kubernetes
itself.

• You can also apply a number of specific controls to your clusters to improve your
security posture.

• You can use Kubernetes to collaboratively improve security without impeding
development velocity.
• Use declarative, immutable configs to your advantage!
• Pick from the enforcement menu as you up your security game.

35©2019 StackRox. All rights reserved.

What’s next?

Have a question now?
Ask in Zoom!

Think of one later?
 c@stackrox.com
 @connorgilbert

Want to learn more?
https://stackrox.com/cncf/

✉

https://stackrox.com/cncf/

