
Secure your apps and
APIs inside K8s envs
CNCF webinar July 11th, 2019

Ivan Novikov
White Hat Hacker, CEO of Wallarm

K8s security
Six steps you need to make (in this direction)

1. Namespaces
2. RBAC
3. Network Policies
4. Pod Security Policies
5. Audit Policy
6. Credentials Management Policy
7. Application Security

How to start? - know your data

Remember! You want to protect data (your own, your customers’,
and their customers’), not environments, apps, servers, your ass…
So, let’s figure out what kind of data you want to operate with
before you try to isolate/secure/change it.
Example: pet toys online shop has some data like this:
● User data (emails, passwords, orders, shipping info, DoBs, etc.)
● Pet data (kind, breed, DoB, etc.)
● Carts (current state of orders)
● Items and their prices
● Banners, clicks, and other marketing things

Data is everything

So, it’s the best practice to split data by domains (personal, orders,
etc.)
But the real world is different
You will be faced with corner cases all the time, like this:
● Caching servers, like memcached/redis stores parts of

everything
● Temporary files, storages, and logs
● Frontend servers and apps proceeds all the data as a first tier

All these things should be solved at an application design stage
before development by an architect (in an ideal world)

#1. Namespaces

To divide one cluster to a few virtual clusters.
Useful quotes from GCP team:
“K8s does not provide a mechanism to enforce security across
Namespaces. You should only use it within trusted domains and
not use when you need to be able to provide guarantees that a
user of the cluster or pods be unable to access any of the other
Namespaces resources”
“You may wish to, but you cannot create a hierarchy of
namespaces. Namespaces cannot be nested within one another. ”

#1. Namespaces

No hierarchy, but we can do prefixes, like <team>-<env>
We need to control misidentifying and misusing namespaces we
defined (kubectl context may help).

The suggestion here is to use the following schema (at least):
<data-domain>-<environment>, i.e. persdata-staging, or
pcidss-production

But you can add other attributes.

#1. Namespaces.
Additional reading

● https://kubernetes.io/docs/concepts/overview/work

ing-with-objects/namespaces/

● https://kubernetes.io/docs/tasks/administer-cluster/

namespaces-walkthrough/

● https://kubernetes.io/blog/2016/08/kubernetes-na

mespaces-use-cases-insights/

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces-walkthrough/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces-walkthrough/
https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/
https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

#2. RBAC

You probably noticed what we did with prefixes in namespaces?
We implemented an attribute based access control, because...

“ABAC, is a powerful concept. However, as implemented in
Kubernetes, ABAC is difficult to manage and understand. It
requires ssh and root filesystem access on the master VM of the
cluster to make authorization policy changes. For permission
changes to take effect the cluster API server must be restarted.”
// GCP team

So, let’s proceed with attributes in namespaces and RBAC then

#2. RBAC. Core idea

Whitelist only (everything unlisted denied by default)
● Subject (developer, devops, process, etc)
● Resource (pod, service, etc)
● Operation (action or REST method)

ClusterRole is the same of Role, plus it allows you to give
permissions for:
● Non-namespaced resources, like nodes
● Resources in all the namespaces of a cluster (please avoid

this)
● Non-resource (built-in) endpoints, like /healthz

#2. RBAC to ABAC by namespace prefixes

contexts:
- context:
 cluster: my-cluster
 namespace: persdata-prod
 user: persdata-prod-reader
 name: persdata-prod
current-context: persdata-prod

#2. RBAC. What to read in addition

● https://kubernetes.io/docs/reference/access-authn-authz/rbac/
● https://kubernetes.io/blog/2017/04/rbac-support-in-kubernete

s/
● https://www.cncf.io/blog/2018/08/01/demystifying-rbac-in-kub

ernetes/
● https://jeremievallee.com/2018/05/28/kubernetes-rbac-names

pace-user.html
● https://kubernetes.io/docs/reference/generated/kubectl/kube

ctl-commands#config_set-context/ context details

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/blog/2017/04/rbac-support-in-kubernetes/
https://kubernetes.io/blog/2017/04/rbac-support-in-kubernetes/
https://www.cncf.io/blog/2018/08/01/demystifying-rbac-in-kubernetes/
https://www.cncf.io/blog/2018/08/01/demystifying-rbac-in-kubernetes/
https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html
https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#config_set-context/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#config_set-context/

#3. Network Policies

“By default, pods are non-isolated; they accept traffic from any
source.”

“Once there is any NetworkPolicy in a namespace selecting a
particular pod, that pod will reject any connections that are not
allowed by any NetworkPolicy. (Other pods in the namespace
that are not selected by any NetworkPolicy will continue to
accept all traffic.)”

#3. Network Policies

You also need to disable metadata API (Azure, GCP, AWS) / etcd
access from all the pods to prevent local exploitation through
server-side issues like SSRF (Shopify case).

Don’t forget to restrict access to your K8s services like dashboard,
control panels, and others (Tesla case)

#3. Network Policies. Shopify SSRF case

#3. Network Policies. Shopify SSRF case

#3. Network Policies. Tesla case

#3. Network Policies
Additional readings

● https://kubernetes.io/docs/concepts/services-networking/net
work-policies/

● https://kubernetes.io/docs/concepts/cluster-administration/n
etworking/

● https://docs.bitnami.com/kubernetes/how-to/secure-your-ku
bernetes-application-with-networkpolicies/

● https://github.com/ahmetb/kubernetes-network-policy-recip
es

● https://medium.com/@reuvenharrison/an-introduction-to-ku
bernetes-network-policies-for-security-people-ba92dd4c809d

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.bitnami.com/kubernetes/how-to/secure-your-kubernetes-application-with-networkpolicies/
https://docs.bitnami.com/kubernetes/how-to/secure-your-kubernetes-application-with-networkpolicies/
https://github.com/ahmetb/kubernetes-network-policy-recipes
https://github.com/ahmetb/kubernetes-network-policy-recipes
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d

#4. Pods Security Policies

“The PodSecurityPolicy objects define a set of conditions that a

pod must run with in order to be accepted into the system, as

well as defaults for the related fields”

“When a PodSecurityPolicy resource is created, it does nothing. In

order to use it, the requesting user or target pod’s service

account must be authorized to use the policy, by allowing the use

verb on the policy.”

#4. Pods Security Policies

This is something like “all-in-one” endpoint security management
policies:

SELinux + AppArmor + FileSystem + docker
+ sysctl blacklist + seccomp + addons

#4. Pods Security Policies

 privileged: false ← to restrict container to get an access to
network and devices at the host (docker thing)
 readOnlyRootFilesystem: true ← read-only FS (remember
chroot/jail?)
 MustRunAsNonRoot: true ← chroot/jail-like thing
 allowPrivilegeEscalation: false ← child process can’t take
more privileges than parent (setuid binaries like ping will be
disabled)

And additional other features I mentioned above

#4. Pods Security Policies.
Additional readings

● https://kubernetes.io/docs/concepts/policy/pod-sec

urity-policy/

● https://resources.whitesourcesoftware.com/blog-w

hitesource/kubernetes-pod-security-policy

● https://kubernetes.io/docs/tasks/configure-pod-con

tainer/security-context/

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://resources.whitesourcesoftware.com/blog-whitesource/kubernetes-pod-security-policy
https://resources.whitesourcesoftware.com/blog-whitesource/kubernetes-pod-security-policy
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

#5. Audit Policy
Stages
RequestReceived - The stage for events
generated as soon as the audit handler
receives the request.
ResponseStarted - Once the response
headers are sent, but before the response
body is sent. This stage is only generated for
long-running requests (e.g. watch).
ResponseComplete - Once the response body
has been completed.
Panic - Events generated when a panic
occurred.

Levels
None - Don’t log events that match this rule.
Metadata - Log request metadata (requesting
user, timestamp, resource, verb, etc.) but not
request or response body.
Request - Tog event metadata and request
body but not response body.
RequestResponse - Log event metadata,
request and response bodies.

#5. Log your apps in the same way!
The best practice is to make your application/API logs 100%
compatible to the same log format.
In this case you can easily track, correlate, and manage them
together.

#5. Audit Policy
Additional readings

● https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

● https://cloud.google.com/kubernetes-engine/docs/concepts/audit-p

olicy

● https://www.noqcks.io/notes/2018/03/31/kubernetes-audit-logging-tu

torial/

● https://medium.com/@noqcks/kubernetes-audit-logging-introducti

on-464a34a53f6c

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://cloud.google.com/kubernetes-engine/docs/concepts/audit-policy
https://cloud.google.com/kubernetes-engine/docs/concepts/audit-policy
https://www.noqcks.io/notes/2018/03/31/kubernetes-audit-logging-tutorial/
https://www.noqcks.io/notes/2018/03/31/kubernetes-audit-logging-tutorial/
https://medium.com/@noqcks/kubernetes-audit-logging-introduction-464a34a53f6c
https://medium.com/@noqcks/kubernetes-audit-logging-introduction-464a34a53f6c

#6. Credentials Management Policy
This thing you need to do by yourself. K8s will not help you (almost).

Certificates-only access policy as the best practice:

● PKI management tools and products can help to manage

● Expiration inside certificates already (you can’t avoid it as you can with tokens

and secrets)

● OIDs for additional attribute-based features as leverage

Not only for infrastructure credentials, but for all the services to make everything

in a one unified way, (I know, this is an ideal world)

Encryption native support

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/)

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

#7. Application Security

Server-side vulnerabilities to gain access to pods
● Here, all the steps (pp.1-6)we did before may help to mitigate

the risk
● Bad news, if we did something wrong there, the rest will not

help
Client-side vulnerabilities to take an access to users’ data
● Audit Policies may help to identify exploitation and

understand damage better

#7. Application Security
Hackers’ insight

● Always use privileged UNIX ports (0-1023) for your services to

avoid overmapping by race conditions

● Disable net.ipv4.tcp_fastopen inside if you don’t mind

● Run everything from non-root

● Do not use host-based authentication

● Check code for vulnerabilities by SAST and DAST both

● Implement L7 firewalls (API WAFs)

#7. Application Security
Attack scenario from the wild #1

● RCE in a Python app because of the Pickle deserialization

● Python (tornado) web service was at unprivileged port 5001

● Self-kill + port re-open from other process to sniff data

● Stolen East-West secret was used to steal the data

https://docs.python.org/3/library/pickle.html

#7. Application Security
Attack scenario from the wild #2

● RoR marshaller Remote Code Execution as an entry point

● Push-based microservices publishing at API gateway (Service

Registry)

● Compromised service (let’s say shipping service) registered

themself as an authentication service (login+passwords

stolen)

https://staaldraad.github.io/post/2019-03-02-universal-rce-ruby-yaml-load/

How to keep everything we made
unchanged

We need to pass through pp.1-7 and then keep it consistent.

This means that we need to avoid inconsistent namespaces,

RBAC, logs, etc.

It’s solvable by automated checks for YAML-based K8s configs.

Some open-source tools can help with this, like Kubeaudit (by

Shopify).

What to read in additional

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cl

uster/ - just print it and read daily).

https://github.com/Shopify/kubeaudit the perfect tools for

automation controls (yes, but that folks who got hacked

completely because of K8s).

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://github.com/Shopify/kubeaudit

More About K8s Security

https://wallarm.com/solutions/waf-for-kubernetes

https://github.com/wallarm/ingress

DM us on Twitter
Ivan Novikov Wallarm
@d0znpp @wallarm

Ask Questions on Slack
 #k8s-security-webr-711 @cloud-native.slack.com

https://wallarm.com/solutions/waf-for-kubernetes
https://github.com/wallarm/ingress

