
1© 2019 PORTWORX

Dinesh Israni
Principal Software Engineer

STORK

(STorage Orchestrator Runtime for Kubernetes)

2© 2019 PORTWORX

Agenda

▪ Introduction

▪ Motivation for Stork

▪ Scheduling stateful services efficiently

▪ Storage Health Monitoring

▪ Disaster Recovery (Snapshots, Backups, Migration)

▪ Q&A

3© 2019 PORTWORX

Introduction

▪ Started and maintained by Portworx

▪ Open source: https://github.com/libopenstorage/stork

▪ Apache 2.0 License

▪ Started in November 2017, v1.0 GA in January 2018

▪ 23 releases made, next release (v2.3.0) scheduled for end of July

https://github.com/libopenstorage/stork

4© 2019 PORTWORX

Some adopters

5© 2019 PORTWORX

Motivation

▪ Help run stateful applications more efficiently on Kubernetes

▪ Provide Hyper-convergence

▪ Advanced health monitoring of stateful apps

▪ Manage lifecycle of stateful applications

▪ Application consistent snapshots

▪ Migrate applications between clusters

▪ Backup Data + K8s resources

▪ Plugin model, can be extended to work with any storage driver

6© 2019 PORTWORX

Scheduling stateful services efficiently

▪ How do you start pods close to where data is located?

▪ Wide use of labels and affinity rules

▪ Doesn’t scale

▪ Doesn’t work with stateful sets

▪ Error prone

7© 2019 PORTWORX

Solution: How to schedule stateful services

▪ Use scheduler extenders
▪ Kubernetes allows extending the default scheduler
▪ Can be used to

▪ “filter” out nodes where storage isn’t available

▪ “prioritize” nodes where data is local

▪ Simple to use
▪ Either configure default scheduler with extender

▪ Or, start new instance of scheduler and use in your apps

▪ Also have support for “initializer” to automatically set scheduler name for
applications, but that got deprecated in K8s 1.14

https://github.com/kubernetes/kubernetes/issues/11470

8© 2019 PORTWORX

Scheduling stateful services efficiently

(2) Filter Request (N1, N2, N3, N4, N5)

N1 N2 N3 N4 N5

(3) Get PX Cluster Status

(4) Filter Response (N1, N2, N3)

PX PX PX

Kubernetes
Scheduler Stork

Kubernetes PX
Service

V
2

V
2V1V

1

9© 2019 PORTWORX

Scheduling stateful services efficiently

(5) Prioritize Request (N1, N2, N3)

N1 N2 N3 N4 N5

(6) Get Nodes for V1 and V2

(7) Prioritize Response (N1:100, N2:200, N3:100)

PX PX PX

Kubernetes
Scheduler Stork

Kubernetes PX
Service

V1 V2 V2V1

Pod1

(8) Start Pod1 on N2

10© 2019 PORTWORX

Challenges with Storage Health monitoring

▪ All good when everything is online
▪ Dealing with failures is difficult, especially with state
▪ What if storage driver goes offline on a node?

▪ Storage degradation
▪ Software bugs/crashes

▪ What happens to pods on that node?
▪ Kubelet is still running
▪ Pods will get stuck, app will not respond
▪ Depending on the app, the health check might not fail either

▪ Stateful sets have a completely different behavior
▪ They don’t reschedule pods even if kubelet stops responding on nodes

▪ Usually requires manual intervention

11© 2019 PORTWORX

Storage Health Monitoring

▪ Monitors the health of storage driver on all nodes

▪ Storage driver offline?

▪ Reschedule pods using storage driver

▪ Rescheduled on another node with volume replica

▪ Continue with local disk performance

▪ Without this, pods will get stuck in Pending, or not able to access storage

▪ For stateful sets this also deals with scenarios where kubelet reports offline on

a node

12© 2019 PORTWORX

Storage Health Monitoring

(3) Reschedule Pod1

N1 N2 N3

(1) Is PX Healthy on all nodes?

PX PX (Offline) PX

Kubernetes
Scheduler Stork

Kubernetes PX
Service

V1 V
2 V2V1

Pod1

(4) Start Pod1 on N1

V2

(2) PX is down on N2

13© 2019 PORTWORX

Disaster Recovery - Snapshots & Application Backups

▪ Need a way to manage lifecycle of storage natively in Kubernetes
▪ There was no native support for snapshotting PVCs
▪ Added support for Snapshots (based on Kubernetes Incubator project)
▪ Also works over a group of PVCs / Volumes for distributed apps using

GroupVolumeSnapshot CRD
▪ In v2.3.0

▪ Backup data + application resources to an objectstore
▪ In case of disaster, point new cluster to BackupLocation and restore the application

▪ Supports
▪ Any S3 compliant objectstore
▪ AzureBlob
▪ GoogleCloudStorage

14© 2019 PORTWORX

Disaster Recovery - Multi-Cloud / Multi-Cluster Migration

Blue-Green: a new version of the storage driver is released, and we want to
qualify with all applications and data.
(Also works for a new version of Kubernetes.)

3
Dev/Test: a bug in production needs to be reproduced off-cluster. We want
to move just that app and its data.

2

Augmentation: we are out capacity and want to move select applications
and data to a second cluster.1

15© 2019 PORTWORX

Disaster Recovery - Multi-Cloud / Multi-Cluster Migration

▪ First pair 2 (or more) clusters

▪ Pairs storage as well as Kubernetes across clusters

▪ Can be any type of Kubernetes cluster (Vanilla K8s on-prem, GKE, AKS, EKS, IKS,

OCP, etc)

▪ Then start migration across clusters

▪ Specify namespace and labels to select which applications to migrate

▪ First migrates all the data then migrates K8s resources

16© 2019 PORTWORX

Disaster Recovery - Schedules

▪ All operations can be scheduled

▪ SchedulePolicy CR can be used to specify when to trigger actions

▪ Periodic, Daily, Weekly, Monthly

▪ Schedule CRs can then be created referring to the SchedulePolicy

▪ VolumeSnapshotSchedule

▪ MigrationSchedule

▪ ApplicationBackupSchedule

17© 2019 PORTWORX

Disaster Recovery - Application consistent operations

▪ Quiesce or flush applications before operation using pre/post execution rules
▪ Rules are defined in a CustomResource (CR) and referred to in Snapshot /

Migration / ApplicationBackup objects
▪ Rules can be run either in the background or foreground while the operation

is being executed
▪ Eg for mysql:

▪ Flush tables and take a lock on the tables before taking snapshot
▪ Needs to run in the background so that database lock is held

▪ Eg for Cassandra:
▪ Flush all data from memory before taking snapshot
▪ Needs to run in the foreground (ie before triggering the operation)

18© 2019 PORTWORX

storkctl - Tool to view and manage CRs

$ storkctl create snap -n mysql -p mysql-data mysql-snapshot
Snapshot mysql-snapshot created successfully

$ storkctl get snap -n mysql
NAME PVC STATUS CREATED COMPLETED TYPE
mysql-snapshot mysql-data Ready 09 Jul 19 02:15 UTC 09 Jul 19 02:15 UTC local

$ storkctl get clusterpair --all-namespaces
NAMESPACE NAME STORAGE-STATUS SCHEDULER-STATUS CREATED
mysql remotecluster Ready Ready 09 Jul 19 01:55 UTC

$ storkctl get migration -n mysql
NAME CLUSTERPAIR STAGE STATUS VOLUMES RESOURCES CREATED ELAPSED
mysqlmigration remotecluster Final Successful 1/1 8/8 09 Jul 19 02:04 UTC 1m16s

19© 2019 PORTWORX

Learn More

▪ Github: https://github.com/libopenstorage/stork

▪ Welcome contributions for drivers and features

▪ Blogs:

▪ https://portworx.com/stork-storage-orchestration-kubernetes/

▪ https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stat

eful-applications/

▪ Contact Info:

▪ Email: disrani@portworx.com

▪ Github: disrani-px

▪ LinkedIn: https://www.linkedin.com/in/dineshisrani/

▪ Slack: http://portworx.slack.com

https://github.com/libopenstorage/stork
https://portworx.com/stork-storage-orchestration-kubernetes/
https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stateful-applications/
https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stateful-applications/
mailto:disrani@portworx.com
https://github.com/disrani-px
https://www.linkedin.com/in/dineshisrani/
http://portworx.slack.com

20© 2019 PORTWORX

Q&A

