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Agenda

▪ Introduction

▪ Motivation for Stork

▪ Scheduling stateful services efficiently

▪ Storage Health Monitoring

▪ Disaster Recovery (Snapshots, Backups, Migration)

▪ Q&A
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Introduction

▪ Started and maintained by Portworx

▪ Open source: https://github.com/libopenstorage/stork

▪ Apache 2.0 License

▪ Started in November 2017, v1.0 GA in January 2018

▪ 23 releases made, next release (v2.3.0) scheduled for end of July

https://github.com/libopenstorage/stork
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Some adopters
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Motivation

▪ Help run stateful applications more efficiently on Kubernetes

▪ Provide Hyper-convergence

▪ Advanced health monitoring of stateful apps

▪ Manage lifecycle of stateful applications

▪ Application consistent snapshots

▪ Migrate applications between clusters

▪ Backup Data + K8s resources

▪ Plugin model, can be extended to work with any storage driver
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Scheduling stateful services efficiently

▪ How do you start pods close to where data is located?

▪ Wide use of labels and affinity rules

▪ Doesn’t scale

▪ Doesn’t work with stateful sets

▪ Error prone
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Solution: How to schedule stateful services

▪ Use scheduler extenders
▪ Kubernetes allows extending the default scheduler
▪ Can be used to 

▪ “filter” out nodes where storage isn’t available

▪ “prioritize” nodes where data is local

▪ Simple to use
▪ Either configure default scheduler with extender

▪ Or, start new instance of scheduler and use in your apps

▪ Also have support for “initializer” to automatically set scheduler name for 
applications, but that got deprecated in K8s 1.14

https://github.com/kubernetes/kubernetes/issues/11470
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Scheduling stateful services efficiently
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Scheduling stateful services efficiently

(5) Prioritize Request (N1, N2, N3)
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Challenges with Storage Health monitoring

▪ All good when everything is online 
▪ Dealing with failures is difficult, especially with state
▪ What if storage driver goes offline on a node?

▪ Storage degradation
▪ Software bugs/crashes

▪ What happens to pods on that node?
▪ Kubelet is still running
▪ Pods will get stuck, app will not respond
▪ Depending on the app, the health check might not fail either

▪ Stateful sets have a completely different behavior
▪ They don’t reschedule pods even if kubelet stops responding on nodes

▪ Usually requires manual intervention
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Storage Health Monitoring

▪ Monitors the health of storage driver on all nodes

▪ Storage driver offline?

▪ Reschedule pods using storage driver

▪ Rescheduled on another node with volume replica

▪ Continue with local disk performance

▪ Without this, pods will get stuck in Pending, or not able to access storage

▪ For stateful sets this also deals with scenarios where kubelet reports offline on 

a node
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Storage Health Monitoring
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N1 N2 N3

(1) Is PX Healthy on all nodes?

PX PX (Offline) PX

Kubernetes 
Scheduler Stork

Kubernetes PX 
Service

V1 V
2 V2V1

Pod1

(4) Start Pod1 on N1

V2

(2) PX is down on N2



13© 2019  PORTWORX 

Disaster Recovery - Snapshots & Application Backups

▪ Need a way to manage lifecycle of storage natively in Kubernetes
▪ There was no native support for snapshotting PVCs
▪ Added support for Snapshots (based on Kubernetes Incubator project)
▪ Also works over a group of PVCs / Volumes for distributed apps using 

GroupVolumeSnapshot CRD
▪ In v2.3.0

▪ Backup data + application resources to an objectstore
▪ In case of disaster, point new cluster to BackupLocation and restore the application

▪ Supports
▪ Any S3 compliant objectstore
▪ AzureBlob
▪ GoogleCloudStorage
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Disaster Recovery - Multi-Cloud / Multi-Cluster Migration

Blue-Green: a new version of the storage driver is released, and we want to 
qualify with all applications and data. 
(Also works for a new version of Kubernetes.) 

3
Dev/Test: a bug in production needs to be reproduced off-cluster. We want 
to move just that app and its data.

2

Augmentation: we are out capacity and want to move select applications 
and data to a second cluster.1
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Disaster Recovery - Multi-Cloud / Multi-Cluster Migration

▪ First pair 2 (or more) clusters

▪ Pairs storage as well as Kubernetes across clusters

▪ Can be any type of Kubernetes cluster (Vanilla K8s on-prem, GKE, AKS, EKS, IKS, 

OCP, etc)

▪ Then start migration across clusters

▪ Specify namespace and labels to select which applications to migrate

▪ First migrates all the data then migrates K8s resources
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Disaster Recovery - Schedules

▪ All operations can be scheduled

▪ SchedulePolicy CR can be used to specify when to trigger actions

▪ Periodic, Daily, Weekly, Monthly

▪ Schedule CRs can then be created referring to the SchedulePolicy

▪ VolumeSnapshotSchedule

▪ MigrationSchedule

▪ ApplicationBackupSchedule
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Disaster Recovery - Application consistent operations

▪ Quiesce or flush applications before operation using pre/post execution rules
▪ Rules are defined in a CustomResource (CR) and referred to in Snapshot / 

Migration / ApplicationBackup objects
▪ Rules can be run either in the background or foreground while the operation 

is being executed
▪ Eg for mysql:

▪ Flush tables and take a lock on the tables before taking snapshot
▪ Needs to run in the background so that database lock is held

▪ Eg for Cassandra:
▪ Flush all data from memory before taking snapshot
▪ Needs to run in the foreground (ie before triggering the operation)
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storkctl - Tool to view and manage CRs

$ storkctl create snap -n mysql -p mysql-data mysql-snapshot
Snapshot mysql-snapshot created successfully

$ storkctl get snap -n mysql
NAME                  PVC             STATUS    CREATED                    COMPLETED              TYPE
mysql-snapshot   mysql-data   Ready       09 Jul 19 02:15 UTC   09 Jul 19 02:15 UTC   local

$ storkctl get clusterpair --all-namespaces
NAMESPACE   NAME              STORAGE-STATUS   SCHEDULER-STATUS   CREATED
mysql               remotecluster   Ready                       Ready                            09 Jul 19 01:55 UTC

$ storkctl get migration -n mysql
NAME                CLUSTERPAIR     STAGE     STATUS       VOLUMES   RESOURCES   CREATED                    ELAPSED
mysqlmigration   remotecluster       Final        Successful   1/1              8/8                    09 Jul 19 02:04 UTC   1m16s
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Learn More

▪ Github: https://github.com/libopenstorage/stork

▪ Welcome contributions for drivers and features

▪ Blogs:

▪ https://portworx.com/stork-storage-orchestration-kubernetes/

▪ https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stat

eful-applications/

▪ Contact Info:

▪ Email: disrani@portworx.com

▪ Github: disrani-px

▪ LinkedIn: https://www.linkedin.com/in/dineshisrani/

▪ Slack: http://portworx.slack.com

https://github.com/libopenstorage/stork
https://portworx.com/stork-storage-orchestration-kubernetes/
https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stateful-applications/
https://portworx.com/free-compute-capacity-across-kubernetes-clusters-migrating-stateful-applications/
mailto:disrani@portworx.com
https://github.com/disrani-px
https://www.linkedin.com/in/dineshisrani/
http://portworx.slack.com
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Q&A


