
Online Talk: RBAC in Kubernetes
https://github.com/javsalgar/rbac-online-talk

https://github.com/javsalgar/rbac-online-talk

I - Creating users

http://progress_bar_id

Question

3

● When starting with K8s, we tend to use full administrator
credentials. Examples: minikube, k8s sandbox...

● In a real cluster we may want to have different users, groups
and privileges

Developer

user: juan
group: dev

Developer

user: jsalmeron
group: dev, tech-lead

user: jjo
group: sre, tech-lead

user: dbarranco
group: sre, devops

 Administrator

 Administrator

kubectl create user ...

● If in Kubernetes everything is modelled as an API Object,
maybe there’s something like

http://progress_bar_id

User management in Kubernetes

4

● Kubernetes provides no API objects for users*

● User management must be configured by the cluster administrator. Examples:

● Certificate-based authentication

● Token-based authentication

● Basic authentication

● OAuth2

*At least something like we have for Deployments, Pods… etc.

http://progress_bar_id

Certificate-based authentication

5

● Kubernetes is configured with a Certificate Authority (CA)

● Every SSL certificate signed with this CA will be accepted by the Kubernetes API

● Two important fields in the SSL certificate:

● Common Name (CN): Kubernetes will interpret this value as the user

● Organization (O): Kubernetes will interpret this value as the group

/etc/kubernetes/pki/ca.crt /etc/kubernetes/pki/ca.key

Private keyPublic certificate

● Possible options for creating certificates: OpenSSL or CloudFlare's PKI toolkit

http://progress_bar_id

Creating user certificate: steps

6

openssl req -new -key juan.key -out juan.csr -subj "/CN=juan/O=devs"

openssl genrsa -out juan.key 2048

openssl x509 -req -in juan.csr -CA CA_LOCATION/ca.crt -CAkey

CA_LOCATION/ca.key -CAcreateserial -out juan.crt -days 500

● Create private key (if it does not exist)

Developer

● Create certificate signing request (CSR)

● Create certificate from CSR using the cluster authority

 Administrator

user group
● Send the CSR to the administrator

http://progress_bar_id

Next step: Create kubectl configuration

7

● To add in your local machine the new configuration:

● Download the cluster authority and generated certificate

● Add the new cluster to kubectl

kubectl config set-cluster sandbox --certificate-authority=ca.pem

--embed-certs=true --server=https://<PUBLIC_ADDRESS_OF_YOUR_CLUSTER>:6443

● Add the new credentials to kubectl

kubectl config set-credentials juan --client-certificate=juan.crt

--client-key=juan.key --embed-certs=true

● Add the new context to kubectl

kubectl config set-context sandbox-juan --cluster=sandbox --user=juan

http://progress_bar_id

Finally: Test your new configuration

8

● Change to the newly created context

kubectl config use-context sandbox-juan

● Let’s execute a basic command

kubectl get pods

Error from server (Forbidden): pods is forbidden: User "juan" cannot list

pods in the namespace "default"

You can have multiple clusters and configurations

● What happened?

http://progress_bar_id

II - Role Based Access Control (RBAC)

http://progress_bar_id

RBAC in Kubernetes

10

● Three important groups

Developer Developer

 Administrator Administrator

OS Process Process in
Pod

Subjects

Pod
Service

Deployment Secrets

ConfigMaps

ReplicaSets Ingress
DaemonSet

Job Nodes

AutoScaler

Namespace

CronJob

API Resources

list get
create watch

delete patch

Operations
(Verbs)

PVC

PV

● RBAC connects the three of them

http://progress_bar_id

RBAC in Kubernetes: Roles

11

Pod

Service

Deployment
Secrets

ConfigMaps

ReplicaSets Ingress

DaemonSet
Job

AutoScaler

CronJob

Namespaced API Resources

list get

create

watch

delete

patch

Operations

● Establish a set of allowed operations (rules) over a set of resources in a namespace

role pod-access

namespace “test”

role ns-admin

http://progress_bar_id

RBAC in Kubernetes: Roles

12

 kind: Role

 apiVersion: rbac.authorization.k8s.io/v1beta1

 metadata:

 namespace: test

 name: pod-access

 rules:

● Need to specify:
○ Api group
○ Name

Find it in the API reference, examples

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

When it is core, we use an empty string

WHICH RESOURCES

WHICH OPERATIONS

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/
http://progress_bar_id

RBAC in Kubernetes: Roles

13

 kind: Role

 apiVersion: rbac.authorization.k8s.io/v1beta1

 metadata:

 namespace: test

 name: ns-admin

 rules:

 - apiGroups: ["*"]

 resources: ["*"]

 verbs: ["*"]

● Wildcards are allowed

http://progress_bar_id

RBAC in Kubernetes: RoleBindings

14

● Connects a role to a subject or set of subjects

namespace “test”

role pod-access

role ns-access

Developer

Developer

Developer

user: jsalmeron
group: tech-lead, dev

user: dgalvez
group: dev

user: juan
group: dev

http://progress_bar_id

RBAC in Kubernetes: RoleBinding

15

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: devs-read-pods

 namespace: test

subjects:

roleRef:

● Examples
○ User
○ Group
○ ...

Later we will see another one

Used to specify which api group the kind
belongs to

- kind: Group

 name: devs

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: pod-access

 apiGroup: rbac.authorization.k8s.io

WHICH SUBJECTS

WHICH ROLE (ONLY ONE PER BINDING)

http://progress_bar_id

RBAC in Kubernetes: RoleBinding

16

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: salme-ns-admin

 namespace: test

subjects:

- kind: User

 name: jsalmeron # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: ns-admin

 apiGroup: rbac.authorization.k8s.io

Mini-exercise: Another way of doing this?

http://progress_bar_id

RBAC in Kubernetes: ClusterRoles

17

Pod

Service

Deployment
Secrets

ConfigMaps

ReplicaSets Ingress

DaemonSet
Job

AutoScaler

CronJob

All API Resources

list get

create

watch

delete

patch

Operations

● Establish a set of allowed operations over a set of resources in the whole cluster

role all-pods-access

Nodes

PVC

PV

role pv-admin

http://progress_bar_id

RBAC in Kubernetes: ClusterRoles

18

 kind: Role

 apiVersion: rbac.authorization.k8s.io/v1beta1

 metadata:

 name: pod-access

 namespace: test

 rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

 kind: ClusterRole

 apiVersion: rbac.authorization.k8s.io/v1beta1

 metadata:

 name: all-pod-access

 rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

● Roles and ClusterRoles have very similar yaml

Only difference

http://progress_bar_id

RBAC in Kubernetes: ClusterRoleBinding

19

● Connects a role to a subject or set of subjects

role all-pod-access

role pv-admin

Developer

user: jsalmeron
group: tech-lead, dev

user: dbarranco
group: sre, dev, devops

user: jbianquetti
group: sre, dev

 Administrator

 Administrator

Whole cluster

http://progress_bar_id

RBAC in Kubernetes: ClusterRoleBinding

20

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: devs-read-pods

 namespace: test

subjects:

- kind: User

 name: jsalmeron # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: ns-admin

 apiGroup: rbac.authorization.k8s.io

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: salme-reads-all-pods

subjects:

- kind: User

 name: jsalmeron # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: all-pod-access

 apiGroup: rbac.authorization.k8s.io

● Just like the previous case, very similar YAML

Only differences

Only differences

http://progress_bar_id

● cluster-admin: For members of the system:masters group. Can do any operation on
the cluster (using cluster-admin ClusterRole).

Default ClusterRoleBindings

21

● Kubernetes includes some ClusterRoleBindings. For example:

● system:basic-user: For unauthenticated users (group system:unauthenticated). No
operations are allowed.

Admin accounts can be created
belonging to this group Administrator

openssl req ... -subj "/CN=dbarranco/O=system:masters"

● ClusterRoleBindings for the different components of the cluster (kube-controller-manager,
kube-scheduler, kube-proxy …)

http://progress_bar_id

More about the possible actions (verbs)

22

● TRIVIA: Example operations and their requirements

kubectl run --image=bitnami/mongodb my-mongodb

kubectl exec -ti mypod bash

kubectl edit deployment my-mongodb mypod

kubectl delete deployment my-mongodb

kubectl expose deployment my-mongodb --port=27017

--type=NodePort

deployments: create

pods: get
pods/exec: create

kubectl get deployments -w deployments: get, list, watch

deployments: get, delete

deployments: get, patch

deployments: get
services: create

list get
create watch

delete patch

http://progress_bar_id

Questions

23

● Find the necessary RBAC rules so the user can contact Helm’s Tiller pod

helm install stable/wordpress --namespace test

● We know that this command should work with the previously created RBAC rules (salme-ns-admin)

helm install stable/wordpress --namespace default

● And what about this command?

helm reset --force && helm init

● Regenerate the Tiller pod and try the command again

Error: rpc error: code = Unknown desc = configmaps is forbidden: User

"system:serviceaccount:kube-system:default" cannot list configmaps in the namespace

"kube-system"

http://progress_bar_id

2018 Bitnami. Proprietary and confidential. 24

Helm under the hood

A server called tiller is in charge of rendering and deploying charts

helm install my-wordpress/ Your cluster

kind: Deployment
metadata:
 name: {{ template "fullname" . }}
spec:
 replicas: {{ .Values.replicaCount }}
 template:
 spec:
 containers:
 - name: wp
 image: {{ .Values.image }}
...

kind: Deployment
metadata:
 name: pilfering-anaconda
spec:
 replicas: 1
 template:
 spec:
 containers:
 - name: wp
 image: bitnami/wordpress:4.8.3
...

Tiller

 Kubernetes API

Process in Pod

How do we configure this? Do we need to provide a certificate to the pod?

http://progress_bar_id

RBAC in Kubernetes (again): ServiceAccount

25

● While regular users are not handled by Kubernetes, processes inside pods do have an API object

Tiller

Developer Administrator OS Process Process in
Pod

ServiceAccount

● Necessary for pods that need to contact Kubernetes API

● Also used for other operations like storing image pull secrets

http://progress_bar_id

RBAC in Kubernetes (again): ServiceAccount

26

apiVersion: v1

kind: ServiceAccount

metadata:

 name: my-service-account

● Can be used in RoleBinding and ClusterRoleBinding as subjects ● Examples
○ User
○ Group
○ ...

Later we will see another one

● ServiceAccounts are used in Pod/RS/Deployment declarations

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 serviceAccountName: my-service-account

● An API token will be automatically
created and stored in the cluster

● The API token will be mounted
inside the containers

If not specified it will use the “default” ServiceAccount

http://progress_bar_id

Deploying Tiller

27

● Create a Tiller ServiceAccount

apiVersion: v1

kind: ServiceAccount

metadata:

 name: tiller-sa

 namespace: kube-system

● Set up RBAC for Tiller

● Which operations requires Tiller?

● In principle, it can deploy
ANYTHING in ANY NAMESPACE

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: tiller-rolebinding

subjects:

- kind: ServiceAccount

 name: tiller-sa # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

 namespace: kube-system

roleRef:

 kind: ClusterRole

 name: cluster-admin

 apiGroup: rbac.authorization.k8s.io

http://progress_bar_id

Deploying Tiller

28

● Update the tiller pod

helm init --service-account tiller-sa --upgrade

● Let’s check if Tiller works now

helm ls

http://progress_bar_id

Next steps in Kubernetes Cluster Administration

29

● Limits and Quotas: ResourceQuota and LimitRanges

● NetworkPolicies

● PodSecurityPolicies

● Different type of authentications like OAuth

Check Bitnami Documentation for several Kubernetes How-To’s:

https://docs.bitnami.com/kubernetes/how-to/

https://docs.bitnami.com/kubernetes/how-to/
http://progress_bar_id

Thank
YouFor more
information,
visit bitnami.com

http://progress_bar_id

