
Open

Application

Model

Kubernetes has

provided a useful set

of APIs to orchestrate

container primitives

But how do we stitch

these into an operable

application?

What about
Helm?!?!

DevOps + Orchestrators

Large ratio app dev to infra/app ops

Homemade PaaS/FaaS built to abstract

orchestrator

Overly complex CI/CD pipelines

Open

App

Model

Platform-agnostic open source

specification that defines cloud

native applications.

Designed to solve how

distributed apps are composed

and transferred to those

responsible for operating them

Currently in prerelease

v1.0.0.alpha1

OAM Principals

Application focused

Cloud + Edge

Separation of concerns

Focuses on developers and applications,

not on container infrastructure

Clearly defined roles for application

developers, application operators, and

infrastructure operators

Consistent application modeling for

cloud, on-prem, and small-edge

devices

OAM Personas

• Allows application developers to focus on their code in a platform-neutral

setting to deliver business value

• Application operators use powerful and extensible operational traits

consistently across platforms and environments

• Infrastructure operators can configure their environments to satisfy any

unique operating requirements

Cloud or Edge

Environment
Code &

containers

Traffic

management
autoscale Identity

App Dev App Ops Infra Ops

OAM Constructs

Components

Traits

Application Scopes

Application Configuration

Components

Purpose: Encapsulate application code

- Workload-type

- Parameters

- Resource

Requirements

- Health/liveliness

probes

Traits

Purpose: Discretionary runtime overlays

- Operational

functionality to

component

instances

Application Scopes

Purpose: Discretionary application boundaries

- Group behaviors

for components

Application Configurations

Purpose: Defines application deployment

- Deploy

components,

traits, and

application

scopes

Application scope Environment

Putting it together

Component

Schematic

yaml

Application

configuration

yaml

• Container pod

spec

• Workload type

• Parameters

Component Schematic

Environment

configuration

App Dev App Ops Infra Ops

pod

Component
instance

Ingress

trait

Simple Example

SingletonServer

Component
DB Component

Network Scope

Ingress trait Manual Scaler trait

Component Schematics

apiVersion: core.oam.dev/v1alpha1
kind: ComponentSchematic
metadata:
 name: web-ui
spec:
 workloadType: core.oam.dev/v1.SingletonServer
 osType: Linux
 parameters:
 - name: DB_SECRET
 type: string
 required: true
 containers:
 - name: web-server
 image: example/web-server:v1
 resources:
 cpu: 1
 mem: 200MB
 ports:
 - name: webport
 value: 8080

Protocol: TCP
 env:
 - name: dbSecret
 fromParam: DB_SECRET

apiVersion: core.oam.dev/v1alpha1
kind: ComponentSchematic
metadata:
 name: mongo-db
spec:
 workloadType:core.oam.dev/v1.Server
 osType: Linux
 containers:
 - name: mongodb
 image: docker.io/bitnami/mongodb:4.0.10-debian-9-r39
 resources:
 cpu: 2
 mem: 600MB
 ports:
 - name: dbport
 value: 27017
 protocol: TCP

OAM Core Workload Types

Trait and Scope

apiVersion: core.oam.dev/v1alpha1
kind: Trait

metadata:

 name: manual-scaler

 annotations:

 version: v1.0.0

 description: "Allow operators to manually scale a workloads

that allow multiple replicas."

spec:

 appliesTo:

 - core.oam.dev/v1alpha1.Server

 - core.oam.dev/v1alpha1.Worker

 - core.oam.dev/v1alpha1.Task

 Properties:

 - name: replicaCount

 Description: The number of instances required to be running

 Required: Y

 Type: integer

apiVersion: core.oam.dev/v1alpha1

kind: ApplicationScope

metadata:

 name: network

 annotations:

 version: v1.0.0

 description: "network boundary that a group components reside

in"

spec:

 type: core.oam.dev/v1.NetworkScope

 allowComponentOverlap: false

 parameters:

 - name: network-id

 description: The id of the network, e.g. vpc-id, VNet name.

 type: string

 required: Y

 - name: subnet-ids

 description: >

 A comma separated list of IDs of the subnets within the

network. For example, "vsw-123" or ""vsw-123,vsw-456".

 There could be more than one subnet because there is a

limit in the number of IPs in a subnet.

 If IPs are taken up, operators need to add another subnet

into this network.

 type: string

 required: Y

 - name: internet-gateway-type

 description: The type of the gateway, options are 'public',

'nat'. Empty string means no gateway.

 type: string

 required: N

Component Schematics

→ App Config

apiVersion: core.oam.dev/v1alpha1

kind: Component

metadata:

 name: web-ui

spec:

 ...

apiVersion: core.oam.dev/v1alpha1

kind: Component

metadata:

 name: mongo-db

spec:

 ...

apiVersion: core.oam.dev/v1alpha1
kind: ApplicationConfiguration
metadata:
 name: service-tracker
spec:
 scopes:
 - name: network
 type: core.oam/dev/v1alpha1.Network
 properties:
 network-id: “mynetworkID”
 subnet-ids: "subnetID1"
 internet-gateway-type: “public”
 components:
 - componentName: mongo-db
 instanceName: mongo-db
 traits:
 - name: manualScaler
 properties:
 replicaCount: 3
 applicationScopes:
 - network
 - componentName: web-ui
 instanceName: web-ui
 parameterValues:
 - name: DB_SECRET
 value: "supersecureconnectionstring"
 traits:
 - name: ingress
 properties:
 hostname: servicetracker.oam.io
 path: /
 service_port: 8080
 applicationScopes:
 - network

How can I use the

specification in

practice?

Existing OAM implementations

Rudr

Alibaba Enterprise Distributed Application Service

Alibaba Resource Orchestration Service

Rudr - k8s reference implementation

OSS project

Works on any k8s cluster

Supports all core OAM constructs

Components

Traits Scopes
Workload

types

autoscale

ingress

networks

health

server

worker

task telemetry

Resource reqs

identity
provider

CPU

Memory

GPU

… … ……

Application Configuration

Application Model

Implementation

OAM Implementation Architecture

Platform
features

Platform
featuresOrchestratorHardware

Infrastructure

… … ……

Hot Topics

OAM and Extensibility

Today OAM supports two categories for component workload

types, trait types, and application scope types

1. Core: must be supported by OAM compliant implementations

2. Extended: optional support by OAM compliant

implementations

Core Construct Types in OAM

Component Workload

Types

App Scope Types Trait Types

Server Network Manual Scaler

Singleton Server Health

Job

Singleton Job

Task

Singleton Task

Example

Server
Component

DB
Component

Network Scope

Ingress trait

Core = black

Extension = blue

Up and coming

OAM is not well positioned for infra operators interested in

implementing extended workload types, extension traits/scopes

Second draft is focused on making OAM more flexible for infra

ops by including existing resources into an OAM runtime

Community

Get Involved

Join the discussion

Join the Community Call (next call 2/25 @ 10:30am PST)

Subscribe to OAM Community Calendar

Contribute to repos: OAM Spec, Rudr

https://gitter.im/oam-dev/community
https://zoom.us/j/271516061
https://calendar.google.com/calendar?cid=dDk5YThyNGIwOWJyYTJxajNlbWI0a2FvdGtAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://github.com/oam-dev/spec
https://github.com/oam-dev/rudr

Application Scopes

Scope definition

Defined by an OAM

implementation

Follows a standard schema

for discoverability

Parameters for

configuration

Traits

Trait definition

Defined by an OAM

implementation

Follows a standard schema

for discoverability

Properties JSON schema

defines the trait’s

configuration options

