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One backend, one frontend:
one source of data and events.

SITUATION
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This does
everything
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Microservices group functionality
by domain/context.
Events decouple microservices.

Still only one frontend.

SITUATION
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VISION: AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Only open standards.
Frontends not aware how events are 
stored.
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Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

VISION: GOALS
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1. Scaling out: number of users, rate of events
2. Event sources
3. Synchronous request, asynchronous processing
4. Authorization

CHALLENGES
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1. SCALING OUT

events
grouped by
event type

events
grouped by
partition,
e.g. user ID

route events
to frontends

load balancer

frontends

event topics/partitions

ß the solution

frontends
subscribe
to events

• Many users, few 
online

• Events from all
microservices



• Kafka as the de-facto standard for 
implementing event-driven architecture:

• Confluent Kafka platform

• Confluent Cloud on GCP

• Azure Event Hubs has Kafka-compatible API

• Amazon Managed Streaming for Kafka (MSK)

• Publish via HTTP
• Easier to setup and use during dev and test

• Used when decrypting data on-the-fly

2. EVENT SOURCES
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• Asynchronous, event-driven processing is 
the new default

• Decoupling: easy to add/remove microservices

• Deployment: easy to deal with 
upgrades/rollbacks/downtime

• But: frontend and 3rd party clients often 
expect immediate response

• Requires “conversion” of asynchronously processed result 
into synchronous request-response 

3. SYNC REQUEST, ASYNC PROCESSING
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• Is ESSENTIAL: any event may be subscribed to
• As little business logic at possible
• As pluggable as possible

4. AUTHORIZATION
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CANDIDATE: ASP.NET SignalR

https://azure.microsoft.com/en-us/services/signalr-service/
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CANDIDATE: ASP.NET SignalR

https://azure.microsoft.com/en-us/services/signalr-service/



Copyright © 2019 Accenture. All rights reserved. 14

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

CANDIDATE: ASP.NET SignalR

✓
✘

✓
✓

✘
✘
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CANDIDATE: Pushpin

Pushpin has no built-in support for connecting to
specific queues/brokers. Instead, you can write a 
small worker program that runs alongside Pushpin, to
receive from the queue and send to Pushpin. Often
you’ll need to transform the data as well, and you can
write any data transformation code in the same 
worker program.

https://pushpin.org/docs/about/
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Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

CANDIDATE: Pushpin

✓
✘

✓
✓

✘
✘
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SOLUTION: Reactive Interaction Gateway
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Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

SOLUTION: Reactive Interaction Gateway

✓
✓

✓
✓

✓
✓
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1. SCALING OUT

K8s Service

Consumer Group

Apache Kafka

Amazon Kinesis

Kafka partitions / Kinesis shards

Server-Sent Events (HTTP/2)

WebSocket (HTTP/1.1)

K8s headless service

for peer discovery

SSE connection

Event-Filter

Kafka Consumer

attaches to forwards subscribed events

subscribes to forward subscribed events

forward events
grouped by event type

event filters and subscriptions
replicated among nodes

events are routed to session
processes from all nodesSession

Node
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2. EVENT SOURCES
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3. SYNC REQUEST, ASYNC PROCESSING

HTTP POST

produce request event

pick up request event

process request

publish response

publish response

HTTP response

frontend message broker backend service

the frontend sees
a traditional API

while processing is
actually 

asynchronous
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4. AUTHORIZATION

subscribe to events

forward published event

Alice authorization service

is Alice allowed
to subscribe to

those event types?

yes

Bob

publish event

is Bob allowed
to publish this event?

yes

subscribing to events
publishing events

authorized by

JWT validation or
calling a service



• Free Software, Apache 2.0 License, 
developed on GitHub

• Open standards:
– CloudEvents (CNCF Sandbox project)
– HTTP/1.1 and HTTP/2
– Server-Sent Events (SSE)
– WebSocket
– Kafka

Reactive Interaction Gateway
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• No external dependencies
• Configuration using environment variables
• Available on Docker Hub

$ docker pull accenture/reactive-interaction-gateway

• Scales like a stateless service
$ kubectl scale deployment rig --replicas=10

Reactive Interaction Gateway
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• Real-time UI for great user experience
• Extending event-driven architecture to the 

frontend decouples frontend and backend
• The Reactive Interaction Gateway enables 

this in a scalable way, using open standards

CONCLUSION
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GitHub: kevinbader
Twitter: @KevnBadr

Check out the Reactive Interaction Gateway 
and let us know what you think!

github.com/Accenture/reactive-interaction-gateway

Thanks to:
• Dominik Wagenknecht <- inventor
• Mario Macai <- long-term core team member
• Accenture’s Software Innovation team



• Duplicate events
• Lost events
• Out-of-order events

APPLICATION-LEVEL 
CONCERNS
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