
THE
EVENT-DRIVEN UI
BRIDGING THE GAP

KEVIN BADER



• Situation
• Vision
• Challenges
• Solution
• Conclusion

AGENDA



One backend, one frontend:
one source of data and events.

SITUATION

Copyright © 2019 Accenture. All rights reserved. 3

This does
everything



Copyright © 2019 Accenture. All rights reserved. 4

Microservices group functionality
by domain/context.
Events decouple microservices.

Still only one frontend.

SITUATION

Authentication
Context

Customer Profile
Context

subscribes

Publishes

profile related

events

Publishes

session related

events

How can we

subscribe

to those events

here?



Copyright © 2019 Accenture. All rights reserved. 5

VISION: AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Only open standards.
Frontends not aware how events are 
stored.



Copyright © 2019 Accenture. All rights reserved. 6

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

VISION: GOALS

Authentication
Context

Customer Profile
Context

subscribes

Publishes

profile related

events

Publishes

session related

events

How can we

subscribe

to those events

here?

Backend



1. Scaling out: number of users, rate of events
2. Event sources
3. Synchronous request, asynchronous processing
4. Authorization

CHALLENGES

Copyright © 2019 Accenture. All rights reserved. 7



Copyright © 2019 Accenture. All rights reserved. 8

1. SCALING OUT

events
grouped by
event type

events
grouped by
partition,
e.g. user ID

route events
to frontends

load balancer

frontends

event topics/partitions

ß the solution

frontends
subscribe
to events

• Many users, few 
online

• Events from all
microservices



• Kafka as the de-facto standard for 
implementing event-driven architecture:

• Confluent Kafka platform

• Confluent Cloud on GCP

• Azure Event Hubs has Kafka-compatible API

• Amazon Managed Streaming for Kafka (MSK)

• Publish via HTTP
• Easier to setup and use during dev and test

• Used when decrypting data on-the-fly

2. EVENT SOURCES

Copyright © 2019 Accenture. All rights reserved. 9



• Asynchronous, event-driven processing is 
the new default

• Decoupling: easy to add/remove microservices

• Deployment: easy to deal with 
upgrades/rollbacks/downtime

• But: frontend and 3rd party clients often 
expect immediate response

• Requires “conversion” of asynchronously processed result 
into synchronous request-response 

3. SYNC REQUEST, ASYNC PROCESSING

Copyright © 2019 Accenture. All rights reserved. 10



• Is ESSENTIAL: any event may be subscribed to
• As little business logic at possible
• As pluggable as possible

4. AUTHORIZATION

Copyright © 2019 Accenture. All rights reserved. 11



Copyright © 2019 Accenture. All rights reserved. 12

CANDIDATE: ASP.NET SignalR

https://azure.microsoft.com/en-us/services/signalr-service/



Copyright © 2019 Accenture. All rights reserved. 13

CANDIDATE: ASP.NET SignalR

https://azure.microsoft.com/en-us/services/signalr-service/



Copyright © 2019 Accenture. All rights reserved. 14

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

CANDIDATE: ASP.NET SignalR

✓
✘

✓
✓

✘
✘



Copyright © 2019 Accenture. All rights reserved. 15

CANDIDATE: Pushpin

Pushpin has no built-in support for connecting to
specific queues/brokers. Instead, you can write a 
small worker program that runs alongside Pushpin, to
receive from the queue and send to Pushpin. Often
you’ll need to transform the data as well, and you can
write any data transformation code in the same 
worker program.

https://pushpin.org/docs/about/



Copyright © 2019 Accenture. All rights reserved. 16

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

CANDIDATE: Pushpin

✓
✘

✓
✓

✘
✘



Copyright © 2019 Accenture. All rights reserved. 17

SOLUTION: Reactive Interaction Gateway



Copyright © 2019 Accenture. All rights reserved. 18

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

SOLUTION: Reactive Interaction Gateway

✓
✓

✓
✓

✓
✓



Copyright © 2019 Accenture. All rights reserved. 19

1. SCALING OUT

K8s Service

Consumer Group

Apache Kafka

Amazon Kinesis

Kafka partitions / Kinesis shards

Server-Sent Events (HTTP/2)

WebSocket (HTTP/1.1)

K8s headless service

for peer discovery

SSE connection

Event-Filter

Kafka Consumer

attaches to forwards subscribed events

subscribes to forward subscribed events

forward events
grouped by event type

event filters and subscriptions
replicated among nodes

events are routed to session
processes from all nodesSession

Node



Copyright © 2019 Accenture. All rights reserved. 20

2. EVENT SOURCES



Copyright © 2019 Accenture. All rights reserved. 21

3. SYNC REQUEST, ASYNC PROCESSING

HTTP POST

produce request event

pick up request event

process request

publish response

publish response

HTTP response

frontend message broker backend service

the frontend sees
a traditional API

while processing is
actually 

asynchronous



Copyright © 2019 Accenture. All rights reserved. 22

4. AUTHORIZATION

subscribe to events

forward published event

Alice authorization service

is Alice allowed
to subscribe to

those event types?

yes

Bob

publish event

is Bob allowed
to publish this event?

yes

subscribing to events
publishing events

authorized by

JWT validation or
calling a service



• Free Software, Apache 2.0 License, 
developed on GitHub

• Open standards:
– CloudEvents (CNCF Sandbox project)
– HTTP/1.1 and HTTP/2
– Server-Sent Events (SSE)
– WebSocket
– Kafka

Reactive Interaction Gateway

Copyright © 2019 Accenture. All rights reserved. 23



• No external dependencies
• Configuration using environment variables
• Available on Docker Hub

$ docker pull accenture/reactive-interaction-gateway

• Scales like a stateless service
$ kubectl scale deployment rig --replicas=10

Reactive Interaction Gateway

Copyright © 2019 Accenture. All rights reserved. 24



• Real-time UI for great user experience
• Extending event-driven architecture to the 

frontend decouples frontend and backend
• The Reactive Interaction Gateway enables 

this in a scalable way, using open standards

CONCLUSION

Copyright © 2019 Accenture. All rights reserved. 25



Copyright © 2019 Accenture. All rights reserved. 26

GitHub: kevinbader
Twitter: @KevnBadr

Check out the Reactive Interaction Gateway 
and let us know what you think!

github.com/Accenture/reactive-interaction-gateway

Thanks to:
• Dominik Wagenknecht <- inventor
• Mario Macai <- long-term core team member
• Accenture’s Software Innovation team



• Duplicate events
• Lost events
• Out-of-order events

APPLICATION-LEVEL 
CONCERNS

Copyright © 2019 Accenture. All rights reserved. 27


