
Harry Ge
Solution Architect, D2iQ

Website: https://kudo.dev

Git Repo: https://github.com/kudobuilder/kudo

Slack: https://kubernetes.slack.com/messages/kudo

Demo: https://www.youtube.com/watch?v=MlJG3sPXf08

https://kudo.dev
https://github.com/kudobuilder/kudo
https://kubernetes.slack.com/messages/kudo
https://www.youtube.com/watch?v=MlJG3sPXf08


What is an Operator?

An automated process that encodes the domain specific knowledge of 
complicated, stateful software in a declarative, data-driven way.



Operator Development Challenges

● Advanced Kubernetes and distributed systems knowledge required

○ Distributed systems programming in Go

○ Challenging for software vendors to hire these skills

● Building a good Operator takes 10k+ lines of code and many months 

● Code duplication between Operators

● No easy integration with CNCF ecosystem tools

● High maintenance burden

Example: Elastic Operator is ~53k LOC



Operator User Challenges

● Running stateful workloads on Kubernetes is still too 
complicated for many users

● Different operators have different workflows and APIs

● Inconsistent debugging tools

● Controller sprawl



Increases operator 
productivity when operating 
services.

A toolkit and runtime for 
building operators optimized 
for complex, stateful 
applications.

Increases developer 
productivity when building 
operators.

What is KUDO?



Operating services is hard
No existing solution provides easy 
to customize means of operating 
stateful services in production

Building operators is hard
This requires a deep understanding 
of Kubernetes, API development, 
Operator API development, and a 
language that fits into the K8s 
environment.

Maintaining operators is hard
Keeping an operator 
implementation up-to-date with the 
latest K8s version is a non-trivial 
effort and, again, requires a deep 
understanding of the changes going 
on in that space.

Why KUDO?

There’s value in making all of that easier.



How KUDO Helps Developers

● KUDO provides abstractions for sequencing lifecycle operations using Kubernetes objects and “plans” -
conceptually similar to runbooks

● Reduces boilerplate and code duplication between Operators

● Reduces the number of controllers in a cluster

● Provides an extension mechanism to create “flavors” of a base Operator for customization to a user’s environment

● Provides ISVs with a tool to ship best practices for day 2 operations alongside their software

● Ships with testing tool to enable TDD of Kubernetes resources



How KUDO Helps Users

● KUDO provides the `kubectl kudo` plugin to deploy, 
debug, and manage workloads.

● It is common to deploy multiple Operators on a cluster. 
KUDO provides a similar API/CLI/workflow experience for 
all.

● All workloads are managed as Custom Resource 
Definitions (CRDs) in Kubernetes, allowing users to 
manage workloads via standard GitOps tooling

● Existing operators can be managed by KUDO, natively 
understanding how to deploy CRDs, custom resources, and 
other operators, enabling these dependencies to be part fo 
other workloads

● (Upcoming) Centralized supportability, metrics/alerting, 
and security/RBAC features, enabling KUDO use for 
enterprise platform teams



Lifecycle Orchestration with KUDO

Plans: define lifecycle operations such as deploy, backup, 
restore, ...

Phases: grouping mechanism for tasks
Strategy: defines the execution order of the phases

Steps: each step consists of one or more tasks
Strategy: defines the execution order of the steps

Tasks: each task creates a Kubernetes object from a 
templated manifest



Lifecycle Orchestration with KUDO - Next

● Operator developer declares a component that they want to operate on
○ Writes create, update, upgrade, delete, and custom plans for each component
○ Writes CLI extensions for each component (optional)

■ e.g.: kubectl kudo kafka topic add analytics-ingest --partitions=3
● KUDO converts operator definition into a set of CRDs
● User installs operator, gets custom CLI, CRDs
● Application components and topology (Kafka Topics, MySQL Tables, etc) now are CRDs, and can be treated like 

any other Kubernetes resource (backup, GitOps, RBAC, etc)



KUDO Architecture



KUDO Community

● Open Governance model based around Kubernetes Enhancement Proposals (KEPs)

● Focus on ease of contribution to core codebase and operators

● 4 reference operators, multiple community operators (including Elastic) in progress

● 0.7.5 with minor releases every 2 to 4 weeks

● 326 Github Stars

● Multiple organizations interested in building operators using KUDO

● 57 contributors with 6 working full time on KUDO



compared to….*



KUDO vs. Operator SDK / Kubebuilder

● Polymorphic controller, supports running multiple types of operators

● Configured via CRDs, extensible via Webhooks

● Oriented towards using existing clients and tooling for software rather than re-building ops-related functionality in 

Go

● Build operators using Kubernetes primitives rather than software development in Go



KUDO vs. Metacontroller

● Both are polymorphic controllers for operators

● KUDO manages CRDs for you and is an “operator” for dynamic CRDs as well as software

● KUDO supports dependencies and has dependency resolution for other operators. Existing Metacontroller 

operators force you to bring your own dependencies to the table

● KUDO allows sequencing of your application during different lifecycles

● KUDO supports custom plans and day 2 operations for software



KUDO vs. Helm (w/ Tiller)

● Controller managing not just the “deploy” step, but also day 2 operations

● Drift detection, repair, and alerting (WIP)

● Sequencing of steps for complicated lifecycles

● “Higher level” features for supportability - get logs, configuration files, metrics from a running instance

● Automatic sandboxing of instances. Working on dynamic KUDO RBAC, possible OPA and other policy integrations 

to dynamically sandbox KUDO itself.



in the Wild



Community Operators

● Zookeeper
● Kafka
● MySQL
● Elastic
● More coming soon



KUDO Ecosystem

● Builds on other OSS projects: kubebuilder, controller-runtime

● Users can extend (progressively enhance) existing Helm charts and CNAB bundles with orchestration provided by 
KUDO (under development)

● KUDO does not aim to solve the “application definition” problem, instead focusing on lifecycle and day 2 
operations. “I have my application deployed, what now?”

● Future versions of KUDO are focused on enabling developers to write application-aware declarative operations and 
workflows around stateful applications (Backups, restores, scaling, disaster recovery)

● Package ecosystem that enables users to 

● Community governance model based on the Kubernetes process, built from the start to easily be vendor neutral



KUDO Roadmap

Dynamic CRDs: Dynamic CRDs provide the ability for KUDO to manage the lifecycle of operator CRDs for the operator developers and 
users. This will enable more expressiveness around declarative components and day 2 operations.

Application Aware Operations: KUDO already provides for, and will be expanding the ability for operators to perform operations such as 
backups, restores, scaling, upgrades, and application-specific tasks in an application-aware way.

Alternate Definition Formats: Evaluating CUE and Starlark as high level, opinionated alternatives to writing operators. Currently collecting 
user data on the needs.

Operator Dependencies: Ability for KUDO to support a wide range of dependencies (from existing instances and connection strings to 
entirely new dependencies that are KUDO managed), and for tighter control of dependency specification by operator developers.

Operator Extensions: Operator extensions provide a mechanism for developers to extend from other formats such as other KUDO 
operators, Helm charts, or CNAB bundles without forking an operator. This enables operators to be enhanced for specific environments, 
such as Kubernetes distributions, monitoring software, or service meshes without multiple maintained versions of the same base tech.

Airgap Support: KUDO will soon support deploying itself and operators in airgapped environments.

Supportability: Features such as robust support bundles, metrics, and alerting that allows operator developers to define how their 
applications should be monitored and alerted upon by default.



Get Involved
● Install: https://kudo.dev and try it out!
● Give Feedback / Open Issues (and check out our Hacktoberfest! label!):

○ https://github.com/kudobuilder/kudo
○ https://github.com/kudobuilder/operators

● #kudo channel on the Kubernetes Slack (https://slack.k8s.io)

https://kudo.dev
https://github.com/kudobuilder/kudo
https://github.com/kudobuilder/operators
https://slack.k8s.io

