

IoT Edge Working Group

Presenter

Dejan Bosanac Red Hat @dejanb

IoT Edge Working Group

- Community to discuss all the topics around IoT and Edge Computing with K8S
- What kind of use cases, workloads and applications are common to running K8s on the Edge?
- Why and how Kubernetes can be a good fit to these Edge scenarios?
- What are the key challenges for deploying of Kubernetes to Edge today?

Agenda

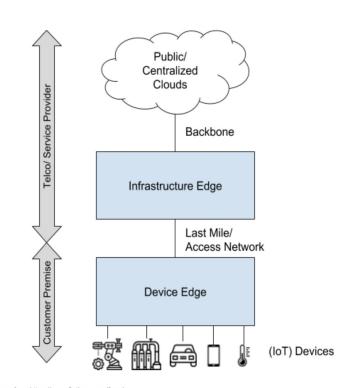
- Brief introduction to Edge Computing and K8s
- Edge workloads and how to run them
- Workload challenges
- Ecosystem
- Future

What is Edge Computing?

- Edge everything that is not cloud
- Effort to deploy workloads closer to the users and devices

Why Edge Computing?

- Latency
- Availability
- Data locality
- ..

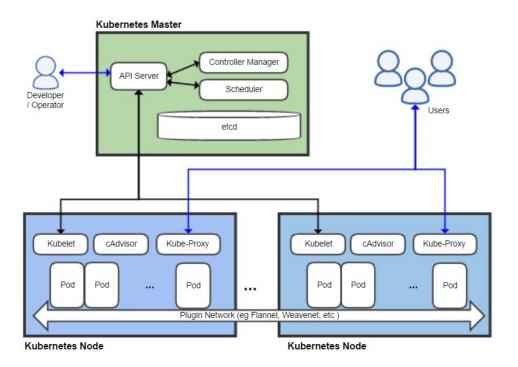

Use Cases

- Telco Infrastructure
- Large scale IoT and IIoT
- Video games
- VR/AR
- AI/ML
- ...

Edge types

- Infrastructure Edge
 - Deploy whole clusters on Edge sites
 - Hybrid-clouds
 - Federated clusters
- Device Edge
 - Deploy cluster nodes outside of the cloud

Source: Icons from https://www.flaticon.com/free-icon



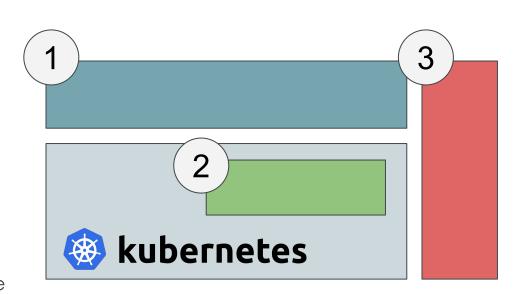
Why Kubernetes?

- Kubernetes API
 - Developers mindshare and tooling
 - Same workloads can move between Cloud and Edge
- Kubernetes Architecture
 - No need to reinvent it

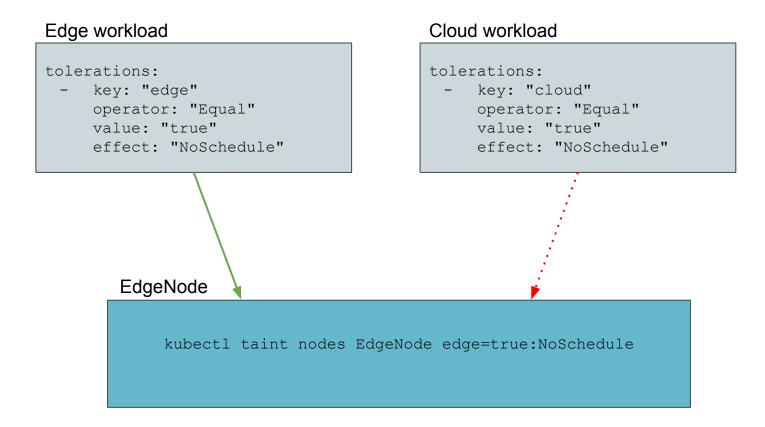
Kubernetes Architecture

Edge Challenges

- Infrastructure
 - How to manage resources (nodes and clusters) on the Edge?
- Control plane
 - How to manage workloads on the Edge?
- Data plane
 - o How Edge sites communicates with the cloud and between themselves?



Kubernetes for the Edge


How does Kubernetes interact with the Edge?

- Edge workloads that run ON Kuberenetes
- Edge challenges mitigated BY Kubernetes
- Edge capabilities not easily serviceable by Kubernetes

Kubernetes features

Edge workloads - Why?

- Data ingestion and processing
 - Protocol conversion
 - Data preprocessing
- Reliability and availability
 - Buffer and batch
 - Caching
- Latency
 - Edge functions
 - Compute offloading
 - Machine learning

Protocol conversion

- Network level
 - Converting non-IP protocols to TCP/IP based ones
 - Modbus in IIoT
 - Bluetooth in consumer IoT
 - Usually converting to some widely used messaging protocol
 - MQTT
 - AMQP
 - HTTP

- Kubernetes supports "device plugins"
- Taints and tolerances can be used for scheduling to appropriate nodes
- New concepts for easier access to interfaces
 - https://www.networkservicemesh.io/

Data preprocessing

- Convert data to general structured messages
- Normalize data structure
 - o Vorto, LWM2M
- Data analytics
 - Send only relevant data
 - Combine multiple sources
- Add metadata
 - Location
 - Identity
 - Security

Generic Kubernetes workloads

Needs to be properly containerized and orchestrated on the Edge nodes

Reliability and high availability

- Buffer and batch
 - Store and forward
 - Brokers on Edge nodes
- Caching
 - Local databases on Edge nodes
 - Sync data with the cloud and other Edge nodes

Edge Nodes/Clusters may have limited storage volumes to hold data until it can be uploaded

Latency: Functions

React locally on sensor or scheduled events

- Possible CNCF projects collaboration
 - Cloud Events https://cloudevents.io/
 - Knative https://github.com/knative/

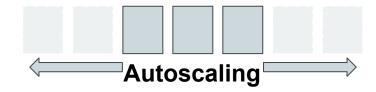
Latency

- Compute offload
 - Schedule resource intensive tasks on the dedicated hardware on the Edge
 - Example AR/VR renderings
- Machine learning
 - Cloud trained models executed on the Edge
 - Edge specific training (environment and data policies)

Taints and tolerances can be used for scheduling to appropriate nodes (e.g. GPU availability)

Device Edge Challenges

Workload challenges


- Problem: Limited node resources
- **Solution**: Workload prioritization
- Problem: Unsecure, unreliable, limited network
- Solution: Network policies and traffic shaping

Workload prioritization - Why

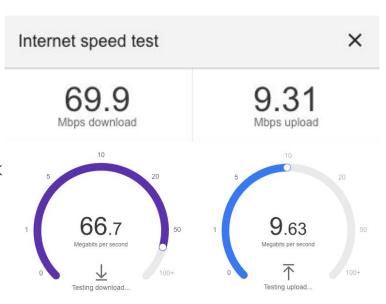
- Limited number of nodes on the Edge
- No autoscaling
- Workloads with wide range of priorities
- Adds more emphasis on prioritization

Edge

Kubernetes prioritization toolkit

Prioritization

- Ranking of priority classes
- Input to pre-emption logic
- Applied to a pod, but acted on by node
- Different from resource based eviction


Quality of Service

- Three levels
 - Guaranteed
 - Burstable
 - Best Effort
- These are implicit from pod spec
- Is NOT considered for preemption
- IS considered in the case of eviction
- preemption != eviction

Traffic shaping - Why

- Managing bandwidth
- Network capacity can be limited
- Different workloads should have different network
- Related to "Workload Prioritization"

Policy

- Deals with what traffic is allowed
- Applied via Network Plugin
- Creates NetworkPolicy resource
- Based on 'cluster-external' IPs.
- Based on SRC/DST and port
 - src/dst can be specified several ways
 - May be subject to cluster environment

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
  namespace: default
spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
  - Ingress
  - Egress
  ingress:
  - from:
    - ipBlock:
        cidr: 172.17.0.0/16
        except:
        - 172.17.1.0/24
    - namespaceSelector:
        matchLabels:
          project: myproject
    - podSelector:
        matchLabels:
          role: frontend
    ports:
    - protocol: TCP
      port: 6379
  egress:
  - to:
    - ipBlock:
        cidr: 10.0.0.0/24
```

ports:

Pod: bandwidth annotations

CNI: Bandwidth Plugin

Bandwidth

- Effected by a set of layers
- Does not manage bandwidth cluster wide

'tc' (Traffic Control)

Linux: Network Namespace

Bandwidth: CNI

Can be enabled as a plugin without specific limits

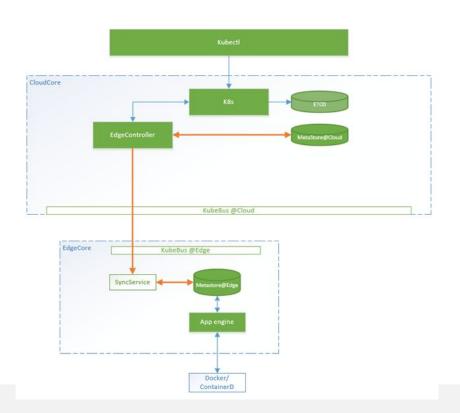
```
{
    "type": "bandwidth",
    "capabilities": {"bandwidth": true}
}
```

"cniVersion": "0.3.1", "name": "mynet", "plugins": ["type": "ptp", "ipMasq": true, "mtu": 512, "ipam": { "type": "host-local", "subnet": "10.0.0.0/24" }, "dns": { "nameservers": ["10.1.0.1"] "name": "slowdown", "type": "bandwidth", "ingressRate": 123, "ingressBurst": 456, "egressRate": 123, "egressBurst": 456

Can be chained to a specific network interface and limit interface bandwidth use

Bandwidth: Pod Spec

```
{
    "kind": "Pod",
    "metadata": {
        "name": "iperf-slow",
        "annotations": {
             "kubernetes.io/ingress-bandwidth": "10M",
             "kubernetes.io/egress-bandwidth": "10M"
        }
    }
}
```



Beyond Kubernetes

Missing solutions for ...

- Hard Edge cluster deployment
- Unreliable network between control plane and nodes
- Nodes with constrained resources

KubeEdge

- https://kubeedge.io/en/
- IoT Edge platform built on Kubernetes
- Constrained resources with lightweight agent
- Edge autonomy with KubeBus

Virtual Kublet

- https://virtual-kubelet.io/
- Framework for implementing alternative Kublet implementations
- Problem: Deploying nodes on constrained devices
- Example: Azure IoT Edge Connector for Kubernetes

k3s

- https://k3s.io
- Lightweight Kubernetes distribution suitable for the Edge
- Problem: Infrastructure plane ... deploying clusters to the Edge

Eclipse ioFog

- https://iofog.org/
- Microservices framework for the Edge
- A lot of helpful tools and concepts to deploy containerized workloads to the Edge
- Moving towards Kubernetes

Future activities

- Dig deeper into specific topics
 - Security
 - Messaging
 - 0 ...

Questions?

Regular Work Group Meeting: Wednesdays at 10:00am/pm Pacific (bi-weekly)

Meeting notes and agenda

Link to join the group

https://groups.google.com/forum/#!forum/kubernetes-wg-iot-edge

Link to join Slack

https://kubernetes.slack.com/messages/wg-iot-edge

White Paper

- http://bit.ly/iot-edge-whitepaper
 - Workloads being considered
 - Technical challenges
 - Available architectural solutions

KubeCon EU 2019

 https://kccnceu19.sched.com/event/MPI4/intro-deep-dive-kubernetes-iot-edge-wg-steven-w ong-vmware-cindy-xing-huawei-dejan-bosanac-red-hat

