GitOps, DSL and App Model: Getting
Started Building Developer Centric
Kubernetes

EHM a
Lei Zhang (Harry) @Alibaba, CNCF Ambassador o 8

®

CLOUD NATIVE

OOOOOOOOOOOOOOOOOOO

Who am |1?

lam a ...

 Platform builder @Alibaba

Kubernetes Engineer

PaaS Engineer

r YAML Engineer

Infra Ops/Engineer

2 © 2018 Cloud Native Computing Foundation

What do | build?

Well ... lots of platforms on top of k8s

Users (developers, operators)

Kubernetes

VB Me & team

3 © 2018 Cloud Native Computing Foundation E

Why do we build platforms on top of K8s?

CLOUD NATIVE

COMPUTING FOUNDATION

Serve Our Users better!

APl & Primitives Levels of Abstraction User Interfaces

Source - Build - Test - Deploy

git pusn compile — staging scaling
, . docker build unit d] auto scale +100
users expectatlon = = f
integration : instances when
production @ Iatency > 10%

code, app, CI/CD pipeline

rollout

* promote the canary
instance with step
of 10%

GUI CLl laC

HorizontalPodAutoscaler
DeMoynmn;_l—— Service

CustomMetricsServer

]

Prometheus
Service Monitor

Ingress

Istio
Virtual Service

&

[

-1 CLOUD NATIVE

Lk =l COMPUTING FOUNDATION

But, Platform Is Not Silver Bullet

Platform API
QOO
0000
00000
00000

000000
The unlimited capabilities 0000000
in k8s ecosystem 0000000 Users ' rapid growing

0000000000000 00 O 4 requirements
0000000
0000000

neco® -t 355580
0000

6 © 2018 Cloud Native Computing Foundation m

Build-platforms-on-top-of K8s

Build an developer centric k8s?

A k8s that speaks higher level API, is end user friendly, and still highly extensible?

CLOUD NATIVE

COMPUTING FOUNDATION

Higher Level API

* User facing abstractions for workloads and operational capabilities

P $ heroku apps
l‘" $ heroku domains
4 $ heroku releases
heroku $ heroku pipeline
$ rio run
$ rio scale

RIO $ rio weight/promote

$ rio route
$ rio up riofile

PodTemplate

Configuration
Revision
Route
Deployment
Pod
% Service
. Node

Level of Abstraction

y

A

Learning Curve <
High

8 | © 2018 Cloud Native Computing Foundation

Low

High

Low

Abstractions vs Extensibility

* Higher level abstraction can significantly lower the learning curve,

though with compromise on extensibility
Level of Abstraction

P2 The only way is A

l‘] building Heroku addon High
> by following tons of

heroku restrictions/conventions

No straightforward
RIQ approach to support more
workloads or capabilities

Partially extendable by

annotations and custom

controllers as long as the

model is not broken
CRD + Controllers = Everything

Extensibility <
Flexible Restricted

Low

9 | © 2018 Cloud Native Computing Foundation E

Building Absiractions on Server Slde is Not Easy

: composition

Abstractions

WebService
- image
- replicas
- port

Deployment
- image
- replicas

Service
- port

Workload
- image
- replicas

decomposition

Rollout
- canary

ArgoRollout
- image
- replicas
- rollout

Knative Revision
- image
- env

: transformation :

A

Deployment
- image
- env
- labelSelectors

Raw k8s API
resource

Abstractions Create Silos

* Because we can't use single abstraction to serve all

No interoperability,
reusability, or portability,
reinventing wheels due to
different APIs are spoken

Users

| run stateless serverless
containers!

App CRD
Canary Manual
—! Scaling
Cert AutoScaler

Deployment

Job
I
certt Flagger
Manager | HPA
Ingress | Virtual
Service

Knative
Service

Route

AutoScaling

Cet’s
Encrypt

Kubernetes

Build an developer centric k8s?

=10]

CLOUD NATIVE

COMPUTING FOUNDATION

Easier Abstraction - DCL (Data Configuration Language)

Abstraction is about data manipulation (data = k8s APl resource), this can be handled by
DCL way easier than CRD + controller

: apps/vl
C U E : Deployment
® H . : Aginx deployment #Spec: { .
FOCUS Only On monlpulcflng . . containers: [...#Container]

configuration data, instead of 3pp3 nginx e S DR
“writing code” ; 5 Mindy | *beploveanes
. . metadata: #Meta
— the main difference between : — #spec .
dk8s : nginx-deployment: {
c : replicas: 3

image: nginx:1.14.2

o SUpersef Of JSON : : port: 80
: } Users
Abstraction data

° Define schema and value in
consistent gramma

: nginx
: nginx:1.14.2

Raw k8s data

Client Side Abstraction Platform Ul
(e.g. dashboard, cli) E

Standardized Higher Level APl - App Model

core.oam.dev/vlalpha2 core.oam.dev/vlalpha2

o . : A Lica ionConfiguration - ;cation S
Open Application Model (OAM) pelicetipncontigices ropticationcontis

: stateless-app

: serverless-app
(]

Define application centric primitives
enforced by OAM spec

: nginx-deployment knative~svc

Break the silos!

autoscaling/v2beta2

autoscaling.knative.dev/v1l
: HorizontalPodAutoscaler

Autoscaler

: core.oam.dev/vlialpha2
: ApplicationConfiguration

Platform foo
: stateful-app :

. Serverless baz

. : : Unified Model Layer
: nginx-deployment : Dl B
e . Manual Scaler K8s Operators L. HPA Deployment

: postgres-operator : D

scale-to-0 Function

HER e Common Traits Common Workload Types
ManualScaler .
Traffic Gateway Monitor Sferv!ce Deployment K8s
Binding Operator
Interoperability > Platform Capability Pool

Virtual
Ingress Route Alert Rollout Function |rtu.a

Machine

Kubernetes + oam kss plugin

N

The Modularized CD System - GitOps

Continuous Integration
° Build
Run Unit Tests

. - Declarative Configurations as “application”
Workloads Operational i
(YAML) Configs :
(YAML) ! :

[J
° Build Docker Image
° Push Docker Image

Git (as source of truth)

&1

k apply

Image Registry

traffic

Continuous Delivery is in k8s now! —»

Scaling Rollout E ﬂ g

Controller Controller

o mewes] J

Let's Put Them Together?

CUE for abstraction

® oAM for app model

¢ GitOps for continues delivery

CLOUD NATIVE

COMPUTING FOUNDATION

Proof-of-Concept

Build

Run Unit Tests
Build Docker Image
Push Docker Image

Continuous Integration

o

Image Registry

Continuous Delivery

17 © 2018 Cloud Native Computing Foundation

name: myapp

components:
frontend:
deployment: »)
--------------- image: inanimate/echo-server

env:
PORT: 8080
traits: .
t ling:
i A developer facing app.yaml
min: 1
rollout: « OAM compliant
strategy: canary
step: 5 .
expose: « CUE based abstraction
service:
type: LoadBalancer
ports:
http:
service_port: 8@
container_port: 80880

O Git (as source of truth)

GitOps

OAM KS8s Plugin + CUE Abstraction Processor

Raw k8s API resources

Deployment |l AutoScaling Rollout N UEE
Controller Controller Controller

metrics

What's Still Missing?

Moving to a real-world solution

e Addon system

— How to register and discover k8s API/CRD as a OAM workload or trait? And

automatically install missing controllers by given CRD?

e Modular CLI/dashboard

— When | registered a new OAM workload/trait, how my CLI/dashboard immediately

show up a new command or tab?

What will be a developer centric pipeline look like? Will Tekton help us here?

18 © 2018 Cloud Native Computing Foundation

Thank You!

CLOUD NATIVE

COMPUTING FOUNDATION

