
GitOps, DSL and App Model: Getting

Started Building Developer Centric
Kubernetes

Lei Zhang (Harry) @Alibaba, CNCF Ambassador

© 2018 Cloud Native Computing Foundation2

Who am I?

• Platform builder @Alibaba

Kubernetes Engineer

PaaS Engineer

Infra Ops/Engineer

…

YAML Engineer

I am a …

© 2018 Cloud Native Computing Foundation3

What do I build?

PaaS Serverless Operator Platform

Well … lots of platforms on top of k8s

E-business PaaS

Kubernetes

Users (developers, operators)

Me & team

Why do we build platforms on top of K8s?

© 2018 Cloud Native Computing Foundation5

Serve Our Users better!

5

API & Primitives

code, app, CI/CD pipeline

Deployment Pod

ControllerHPA

NodeSidecar

NetworkPolicy CR/CRD

Levels of Abstraction

scaling

• auto scale +100

instances when

latency > 10%

rollout

• promote the canary

instance with step

of 10%

HorizontalPodAutoscaler

CustomMetricsServer

Prometheus

Service Monitor

Istio
Virtual Service

Deployment IngressService

User Interfaces

YAML

GUI CLI IaC

YAML

YAML

YAML

users’ expectation

what k8s provides

© 2018 Cloud Native Computing Foundation6

But, Platform Is Not Silver Bullet

Users‘ rapid growing
requirements

Platform API

The unlimited capabilities
in k8s ecosystem

Build platforms on top of K8s

Build an developer centric k8s?

A k8s that speaks higher level API, is end user friendly, and still highly extensible?

© 2018 Cloud Native Computing Foundation8

Higher Level API

• User facing abstractions for workloads and operational capabilities

Level of Abstraction

Learning Curve
High Low

Low

High

Deployment
Pod

Service
Node
…

PodTemplate
Configuration

Revision

Route

$ heroku apps
$ heroku domains

$ heroku releases

$ heroku pipeline
$ rio run
$ rio scale

$ rio weight/promote

$ rio route
$ rio up riofile

© 2018 Cloud Native Computing Foundation9

Abstractions vs Extensibility

• Higher level abstraction can significantly lower the learning curve,
though with compromise on extensibility

Level of Abstraction

Extensibility

Flexible Restricted

Low

High

CRD + Controllers = Everything

The only way is
building Heroku addon

by following tons of

restrictions/conventions

No straightforward
approach to support more

workloads or capabilities

Partially extendable by
annotations and custom

controllers as long as the
model is not broken

© 2018 Cloud Native Computing Foundation10

Building Abstractions on Server Side is Not Easy

WebService
- image

- replicas

- port

Abstractions

Deployment
- image

- replicas

Service
- port

Raw k8s API
resource

Workload
- image

- replicas

Rollout
- canary

ArgoRollout
- image

- replicas

- rollout

Deployment
- image

- env

- labelSelectors

Knative Revision
- image

- env

composition

decomposition

transformation

© 2018 Cloud Native Computing Foundation11

Abstractions Create Silos

• Because we can’t use single abstraction to serve all

I run stateful workloads! I run stateless apps!
I run stateless serverless

containers!

Users

Kubernetes

Cert

Manager

Ingress
Let’s

Encrypt

Flagger

Virtual

Service

Manual

Scaling

App CRD

HPA

Knative

Service

Cert

Canary

AutoScaler

AutoScaling

Route

Job
Deployment

No interoperability,

reusability, or portability,

reinventing wheels due to

different APIs are spoken

Build an developer centric k8s? Yes!

But How?

© 2018 Cloud Native Computing Foundation13

Easier Abstraction – DCL (Data Configuration Language)

Abstraction is about data manipulation (data = k8s API resource), this can be handled by
DCL way easier than CRD + controller

CUE

• Focus only on manipulating
configuration data, instead of
“writing code”

– the main difference between
cdk8s

• Superset of JSON

• Define schema and value in
consistent gramma

Raw k8s data

Abstraction data

Platform UI

(e.g. dashboard, cli)

Users

CUE Schema

Client Side Abstraction

© 2018 Cloud Native Computing Foundation14

Standardized Higher Level API - App Model

Open Application Model (OAM)

• Define application centric primitives
enforced by OAM spec

• Break the silos!

Common Traits

Function

Deployment
K8s

Operator

Virtual

Machine

Gateway

Route

Traffic

Alert

Monitor
Service

Binding

RolloutIngress

interoperability

Application Application Application

Platform foo Platform bar Serverless baz

Common Workload Types

Manual Scaler K8s Operators

Kubernetes + OAM K8s Plugin

HPA Deployment scale-to-0 Function

Unified Model Layer

Platform Capability Pool

© 2018 Cloud Native Computing Foundation15

The Modularized CD System - GitOps

Declarative Configurations as “application”

Git (as source of truth)

Continuous Integration
● Build

● Run Unit Tests

● Build Docker Image

● Push Docker Image

Image Registry

Operational

Configs

(YAML)

Revision
Controller

Scaling
Controller

Rollout
Controller

k apply

Workload
Controller

Kubernetes

metrics

traffic

Workloads

(YAML)

Continuous Delivery is in k8s now!

code

Let’s Put Them Together?
• CUE for abstraction

• OAM for app model

• GitOps for continues delivery

A developer centric k8s is coming up!

© 2018 Cloud Native Computing Foundation17

Proof-of-Concept

Git (as source of truth)

Continuous Integration
● Build

● Run Unit Tests

● Build Docker Image

● Push Docker Image

Image Registry

AutoScaling
Controller

Rollout
Controller

GitOps

OAM K8s Plugin + CUE Abstraction Processor

Kubernetes

traffic

code

Raw k8s API resources

A developer facing app.yaml

• OAM compliant

• CUE based abstraction

metrics

Deployment
Controller

Continuous Delivery

© 2018 Cloud Native Computing Foundation18

What’s Still Missing?

• Addon system

– How to register and discover k8s API/CRD as a OAM workload or trait? And

automatically install missing controllers by given CRD?

• Modular CLI/dashboard

– When I registered a new OAM workload/trait, how my CLI/dashboard immediately

show up a new command or tab?

• What will be a developer centric pipeline look like? Will Tekton help us here?

Moving to a real-world solution

Thank You!
Enjoy the journey of building developer facing Kubernetes!

