
Eduardo Silva
eduardo@treasure-data.com

 @edsiper

Fluent Bit v1.5
Webinar

July 17, 2020

Wesley Pettit
wppttt@amazon.com

 @PettitWesley

Masoud Koleini
masoud.koleini@arm.com

 @koleini

mailto:eduardo@treasure-data.com
mailto:eduardo@treasure-data.com
mailto:eduardo@treasure-data.com

Agenda

● Introduction to Fluent Bit

● Fluent Bit v1.5

● Migrating AWS plugins from

Go to C

● Stream Processing

● Q&A

Introduction to Fluent Bit

End to End

HW / SW Data / Event / Log

Communication Workflow

Analysis

Data Ingestion

HW / SW Data / Event / Log

Performance Penalties

Analysis

HW / SW Data / Event / Log

HW / SW Data / Event / Log

Data Challenges
Multiple Sources of Information

● Network protocols: TCP / UDP

● File system, common log files

● Systemd / Journald

● Others

Data Challenges
Distributed Environments: e.g: Kubernetes

Node 1

Master

Pod 1

Pod 3

Pod 2

Pod N

Node 2

Pod 1

Pod 3

Pod 2

Pod N

Node 3

Pod 1

Pod 3

Pod 2

Pod N

Node N

Pod 1

Pod 3

Pod 2

Pod N

Data & Logging Challenges
.. and each one with different data formats, structure ?

● Apache Logs

[14/Mar/2019:23:43:52 +0000] GET /Frasera HTTP/1.0 500 2216

● MySQL

2019-04-30T21:32:39.095880Z 0 [Note] InnoDB: Mutexes use GCC atomic builtins

● JSON Maps

{“log”: “Hey GEC!”, “stream”: “stdout”, “time”: “2019-05-07T10:03:11.33507113Z”}

● Many others…!

Data & Logging Challenges
.. and each one with different data formats

● Apache Logs

[14/Mar/2019:23:43:52 +0000] GET /Frasera HTTP/1.1 500 2216

● MySQL

2019-04-30T21:32:39.095880Z 0 [Note] InnoDB: Mutexes use GCC atomic builtins

● JSON Maps

{ “log”: “Hey GEC!” , “stream”: “stdout” , “time”: “2019-05-07T10:03:11.33507113Z” }

● Many others…!

● Collect data from different sources

● Convert from unstructured to structured messages

● Data enrichment & filtering

● Delivery: multiple destinations like databases or cloud services

Ideal tool

Before Data Analysis we need:

Apache License v2.0

Fluent Bit is a CNCF sub-project under the umbrella of Fluentd

CNCF Ecosystem

● Started in 2015

● Origins: Lightweight log processor for Embedded Linux

● Quickly evolved as a solution for the Cloud space

● Apache License v2.0

Fluent Bit

About

Fluent Bit
Design & Internals

● Written in C language

● Low memory and CPU footprint (memory around 600KB)

● Pluggable Architecture (> 60 plugins available)

● Built-in security: TLS on Network I/O

Logging Processing in Kubernetes
Read Logs from the Filesystem or Journald

Node

Master

/var/log/containers/*

Fluent Bit Pod

Pod 1

Pod N Read Logs

Logging Processing in Kubernetes
Read Logs from the Filesystem or Journald

Node

Master

/var/log/containers/*

Fluent Bit Pod

Pod 1

Pod N Read Logs

Logging Processing in Kubernetes
Read Logs from the Filesystem or Journald

/var/log/containers/*

Pod 1

Pod N
Read Logs

Pod 1

Pod N
Read Logs

Master

/var/log/containers/*

Fluent Bit v1.5
by Eduardo Silva

Fluent Bit v1.5
Core: Networking and KeepAlive

● Connect Timeouts

● Custom Source Address / network interface

● Keep Alive for TCP and TLS Sessions

● Keep Alive Idle Timeouts

Fluent Bit v1.5
Windows Support Improvements

● Windows Service Support

● Windows Event Log Input Plugin: full UTF-8 encoding

● Kubernetes Support

Fluent Bit v1.5
Monitoring: Grafana Dashboards

Fluent Bit v1.5
Monitoring: Storage Metrics

● Storage Layer Chunks

○ Memory

○ File System

● Input plugin granular stats

Fluent Bit v1.5
New Enterprise Connectors

Fluent Bit v1.5
Highly Improved: Google Stackdriver

● Kubernetes resources types: containers, pods and nodes

● Labels as special fields

● Add associated operation as a special field

Project Status
Adoption as of July 2020

2018 18 Million
2019 62 Million
2020 106 Million

Deployments

Enterprise Adoption

Migrating AWS plugins to
Fluent Bit Core

by Wesley Pettit

Last Year: Go plugins
Launched AWS for Fluent Bit with Go plugins

● Amazon CloudWatch Logs

● Amazon Kinesis Data Firehose

● Amazon Kinesis Data Streams

Go plugins: Why ?

● Primary reason: AWS SDK for Go

● Secondary reason: Speed of Development

AWS Authentication

● Custom Auth Algorithm: Sigv4 Signing

● Many sources for Credentials

○ ECS IAM Roles for Tasks

○ EKS IAM Roles for Service Accounts

○ EC2 Instance Role

○ Local AWS Profile in shared credential file

○ Environment Variables

○ STS Assume Role

New in Fluent Bit 1.5: Core C Library for AWS Auth

Custom Library that uses Fluent Bit’s built in HTTP Client and

concurrency features

New in Fluent Bit 1.5: Core C Library for AWS Auth

Amazon ElasticSearch Service Support

[OUTPUT]
 Name es
 Match *
 Host vpc-test-domain-ke7thhzo7ite7y.us-west-2.es.amazonaws.com
 Port 443
 Index my_index
 Type my_type
 AWS_Auth On
 AWS_Region us-west-2
 TLS On

Fluent Bit Configuration for AWS Elasticsearch

Amazon ElasticSearch Service Support

[OUTPUT]
 Name es
 Match *
 Host vpc-test-domain-ke7thhzo7ite7y.us-west-2.es.amazonaws.com
 Port 443
 Index my_index
 Type my_type
 AWS_Auth On
 AWS_Region us-west-2
 AWS_Role_ARN arn:aws:iam::11111111111:role/provider-testing
 TLS On

Fluent Bit Configuration for AWS Elasticsearch with Role

New CloudWatch Logs Plugin in C

[OUTPUT]
 Name cloudwatch_logs
 Match *
 region us-east-1
 log_group_name fluent-bit-cloudwatch
 log_stream_prefix from-fluent-bit-
 auto_create_group On

New CloudWatch Plugin: Performance

New CloudWatch Plugin: Performance

Long term plan

● Rewrite all 3 Go plugins in C in core of Fluent Bit

● Deprecate Go Plugins

● Alias Go plugin names to C plugins

● Timeline uncertain

What am I working on now?

● Amazon S3 output support

● If you have thoughts or ideas, post on GitHub

S3 Support

● Multipart Uploads

○ Send data in small chunks frequently

○ Minimal local buffering

[OUTPUT]
 Name s3
 Match *
 bucket my-bucket
 region us-west-2
 file_size 250M

Fluent Bit + AWS: How to get help

● Open issue on fluent/fluent-bit and mention @PettitWesley

● Preferred: Open issue on aws/aws-for-fluent-bit repo

Contributing: Learning Fluent Bit Code

Stream Processing
by Masoud Koleini

Stream Processing

 It’s the ability to perform

Data Processing while it Still in Motion
“

“

Stream Processing
Events

● Records emitted by applications, services or hardware

● Events are structured messages

● Composition

○ Timestamp: specify when the event was created

○ Message: the event informational data

Stream Processing
General Goals

● Fast and Lightweight Data Processing

● No Tables

● No Indexing / Index-Free

● Easy to use programming model

How ?

Stream Processor

HW / SW

Real Time Analysis

HW / SW Event

HW / SW

Event

Event

Stream Processor

Stream Processor

Real Time Analysis

Stream Processor

● Receive structured events (records)

● Expose a Query Language

○ Keys selection

○ Filtering

○ Aggregation Functions

○ Events Routing

● Do processing in-memory

HW / SW Event

HW / SW Event

HW / SW Event

Edge Cloud

Analysis

Stream
Processor

Log Events
Collector

(aggregator)

Stream Processing on the Edge
Logging on Steroids

HW / SW Event

HW / SW Event

HW / SW Event

Edge Cloud

Analysis

Stream
Processor

Log Events
Collector

(aggregator)

HW / SW Event

HW / SW Event

HW / SW Event

Edge Cloud

Log Events Collector

Analysis

Stream
Processor

Analysis of streaming data (logs, metrics, etc.) in real time

Goals and Features

● Stream Processing features

○ Offloads computations from servers to data collectors

○ Only sends required data to cloud

○ Uses declarative SQL-like language to express the computations

○ Integrated in Fluent Bit core

CREATE STREAM Syntax

Stream Processor Functions

● Aggregation Functions:

 AVG(key), COUNT(key), COUNT(*), MIN(key), MAX(key), SUM(key)

● Time Functions:

 NOW(), UNIX_TIMESTAMP()

● Timeseries Function:

TIMESERIES_FORECAST(key1, key2, value)
TIMESERIES_FORECAST_R(key1, key2, value, max)

 Fluent Bit Stream Processing syntax support subkeys, for instance: key[sub1][sub2]

Example: Stream Creation

Stream Processing

Demo

Q & A

fluent/fluent-bit

fluentbit.io

