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Introducing 
ClickHouse



Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is an open source data warehouse
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And it’s really fast!
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ClickHouse is also a distributed application

ClickHouse Server

shard1
Analytic 

application

Zookeeper Server

ClickHouse Server

shard1

ClickHouse Server

shard1

ClickHouse Server

shard2

ClickHouse Server

shard2

ClickHouse Server

shard2

Zookeeper Server Zookeeper Server

Availability Zone Availability Zone Availability Zone



Going Cloud 
Native -- the 
User View



ClickHouse on Kubernetes is complex!
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Operators encapsulate complex deployments

kube-system namespace

ClickHouse 
Operator

your-favorite namespace

Apache 2.0 source, 
distributed as Docker 

imageSingle specification 

Best practice deployment

ClickHouse 
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ClickHouse operators are easy to install
Get operator custom resource definition: 
wget \ 
https://raw.githubusercontent.com/Altinity/clickhouse-operato
r/master/deploy/operator/clickhouse-operator-install.yaml

Install the operator:
kubectl apply -f clickhouse-operator-install.yaml

Remove the operator:
kubectl delete -f clickhouse-operator-install.yaml



You need at least one Zookeeper ensemble
Simplest way is to use helm:
kubectl create namespace zk

helm install --namespace zk --name zookeeper \ 
incubator/zookeeper

(There’s also an operator for Zookeeper now)



Setting up a data warehouse--the basics
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
  name: "cncf"
spec:
  configuration:

clusters:
  - name: replicated
      layout:
        shardsCount: 2
        replicasCount: 1
  zookeeper:
  nodes:
     - host: zookeeper.zk

Name used to identify all resources

Definition of cluster

Location of service we depend on



Adding users and changing configuration
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
  name: "cncf"
spec:
  configuration:

users:
      demo/password: demo
      demo/profile: default
      demo/quota: default
      demo/networks/ip: "::/0"

clusters:
  - name: replicated

Changes take a few 
minutes to propagate



Templates make it easy to define defaults
  defaults:
    templates: 
      volumeClaimTemplate: persistent
      podTemplate: clickhouse:19.6
  templates:
    volumeClaimTemplates:
      - name: persistent
        spec:
          accessModes:
            - ReadWriteOnce
          resources:
            requests:
              storage: 10Gi

Name of template

Storage misconfigurations 
lead to insidious errors



Scale up/down by modifying layout
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
  name: "cncf"
spec:
  configuration:

clusters:
  - name: replicated
      layout:
        shardsCount: 3
        replicasCount: 3

Increase shards to 
add write capacity

Raise replicas to 
add read capacity



Demo Time!

ClickHouse 
on 
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in Action



Going Cloud 
Native -- Inside 
the Operator



Operators and event processing
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Clickhouse custom resource definition
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Global defaults
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Cluster topology, 
users, zookeeper 

locations, etc.
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Node variation is common in data warehouses
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May run for weeks!
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Stateful sets don’t quite match our node model

Stateful 
Set

Pods have identical 
configuration and 

non-varying storage

Pods have varying 
capacity, affinity, 

version

Need to alter storage 
to add/change 

capacity



Analyzing state to perform upgrades
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Division of responsibilities -- adding a replica

ClickHouse 
Operator

Process add replica Create configmap, 
statefulset, Pod, PV Boot

Configure monitoring

Send schema Add tables

Join cluster



Operator = Deployment + Operation + Monitoring
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System dynamism complicates monitoring
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System dynamism complicates monitoring
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Speaking of storage, we have options
● Cloud storage:

○ AWS
○ GKE
○ Other cloud providers

● Local storage
○ emptyDir
○ hostPath
○ local Complex

Network access

Simple

Fast



Use storageClassName to bind storage
Use kubectl to find available storage classes:
  kubectl describe StorageClass

Bind to default storage:  
  spec:
    storageClassName: default

Bind to gp2 type
  spec:
    storageClassName: gp2



Explicit data placement is simplest for users
  clusters:
  - name: zoned
    layout:
      shardsCount: 3
      replicas:
        - templates:
            podTemplate: clickhouse-in-zone-us-west-2a
        - templates:
            podTemplate: clickhouse-in-zone-us-west-2b

Replicas use different 
pod templates

Templates encapsulate 
affinity to specific zone



Templates also enable portability
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Resource 
Definition
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(Differences mostly 
in templates) 



ClickHouse operator roadmap
● Backup and restore
● Reclaim storage in new clusters
● Services

○ Per node access
○ External vs. internal endpoints

● Security
○ Certificate management across nodes
○ Encrypted storage



Using 
Kubernetes to 
Build Analytic 
Solutions



Complete solution with dashboards and 
predictive analytics

Kubernetes benefit #1

Kafka Consumer

Apps

ClickHouse

AppsContent 
Sources

GrafanaML Pipeline

Ability to integrate full 
solutions with multiple 
microservices 



Kubernetes benefit #2

ClickHouse

Internal 
Service 

Monitoring 
Stack

Independently 
scaled analytics 
backend for 
different services

ClickHouse

Customer-
Facing Web 

Analytics 
Stack

Separate 
sharding, 
replication, 
storage, etc.



Biggest long-range opportunity

Kubernetes democratizes data 
warehouse access

Operators enable effective data management

ClickHouse Kubernetes operator enables any 
application to add high-performance analytics



Thank you!

Questions?

Presenters:
rhodges@altinity.com
vladislav@altinity.com

ClickHouse Operator:
https://github.com/Altinity/clickhouse-operator

ClickHouse:
https://github.com/yandex/ClickHouse

Altinity:
https://www.altinity.com
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