
Democratizing Analytics
Cloud native data warehouses on Kubernetes

Robert Hodges and Vlad Klimenko

Presenting the Presenters

Vlad Klimenko
Senior Software Engineer, Altinity

15+ years of database and application
experience. Main designer of

ClickHouse Kubernetes operator.

Robert Hodges
CEO Altinity

30+ years on DBMS including 20
different DBMS types. Working

on Kubernetes since 2018

Introducing
ClickHouse

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is an open source data warehouse

ClickHouse Server

 a b c d

And it’s really fast!

ClickHouse Server

 a b c d

ClickHouse Server

 a b c d

ClickHouse Server

 a b c d

ClickHouse is also a distributed application

ClickHouse Server

shard1
Analytic

application

Zookeeper Server

ClickHouse Server

shard1

ClickHouse Server

shard1

ClickHouse Server

shard2

ClickHouse Server

shard2

ClickHouse Server

shard2

Zookeeper Server Zookeeper Server

Availability Zone Availability Zone Availability Zone

Going Cloud
Native -- the
User View

ClickHouse on Kubernetes is complex!

Zookeeper
Services

Zookeeper-0

Zookeeper-2

Zookeeper-1Shard 1 Replica 1
Replica
Service

Load
Balancer
Service

Shard 1 Replica 2

Shard 2 Replica 1

Shard 2 Replica 2

Replica
Service

Replica
Service

Replica
Service

User Config Map Common Config Map

Stateful
Set Pod

Persistent
Volume
Claim

Persistent
Volume

Per-replica Config Map

Operators encapsulate complex deployments

kube-system namespace

ClickHouse
Operator

your-favorite namespace

Apache 2.0 source,
distributed as Docker

imageSingle specification

Best practice deployment

ClickHouse
Resource
Definition

ClickHouse operators are easy to install
Get operator custom resource definition:
wget \
https://raw.githubusercontent.com/Altinity/clickhouse-operato
r/master/deploy/operator/clickhouse-operator-install.yaml

Install the operator:
kubectl apply -f clickhouse-operator-install.yaml

Remove the operator:
kubectl delete -f clickhouse-operator-install.yaml

You need at least one Zookeeper ensemble
Simplest way is to use helm:
kubectl create namespace zk

helm install --namespace zk --name zookeeper \
incubator/zookeeper

(There’s also an operator for Zookeeper now)

Setting up a data warehouse--the basics
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "cncf"
spec:
 configuration:

clusters:
 - name: replicated
 layout:
 shardsCount: 2
 replicasCount: 1
 zookeeper:
 nodes:
 - host: zookeeper.zk

Name used to identify all resources

Definition of cluster

Location of service we depend on

Adding users and changing configuration
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "cncf"
spec:
 configuration:

users:
 demo/password: demo
 demo/profile: default
 demo/quota: default
 demo/networks/ip: "::/0"

clusters:
 - name: replicated

Changes take a few
minutes to propagate

Templates make it easy to define defaults
 defaults:
 templates:
 volumeClaimTemplate: persistent
 podTemplate: clickhouse:19.6
 templates:
 volumeClaimTemplates:
 - name: persistent
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Name of template

Storage misconfigurations
lead to insidious errors

Scale up/down by modifying layout
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "cncf"
spec:
 configuration:

clusters:
 - name: replicated
 layout:
 shardsCount: 3
 replicasCount: 3

Increase shards to
add write capacity

Raise replicas to
add read capacity

Demo Time!

ClickHouse
on

Kubernetes
in Action

Going Cloud
Native -- Inside
the Operator

Operators and event processing

kubectl apply
ClickHouse

Operator
(Custom
Resource
Controller)

ClickHouse
Resource
Definition

Kubernetes API
Events

Actions

Native
ControllerNative

ControllerNative
Controllers

Etcd

Pod

Service

Stateful
Set

Custom
Resource

CHI

Pod Stateful
Set

Service

Persistent
Volume

Persistent
Volume

Clickhouse custom resource definition

defaults

Global defaults

configuration

Cluster topology,
users, zookeeper

locations, etc.

serviceTemplates
Network resources

podTemplates
Container definitions

storageClaimTemplates
Storage definitions

Stateful
Sets

Services

Pods

Persistent
Volumes

Node variation is common in data warehouses

ClickHouse Server

shard1

Version: 19.16.14

10 Tb
HDD

ClickHouse Server

shard1

Version: 20.1.4

1 TB
SSD

10 Tb
HDD

Production Replica
on stable version
with single HDD

Canary Replica on
new version with
tiered storage

May run for weeks!

Hot Data Cold DataAll Data

Stateful sets don’t quite match our node model

Stateful
Set

Pods have identical
configuration and

non-varying storage

Pods have varying
capacity, affinity,

version

Need to alter storage
to add/change

capacity

Analyzing state to perform upgrades

Pod
chi-0-0

Update resource definition

ClickHouse
Operator

Apply Pod
chi-0-1

Pod
chi-1-1

Pod
chi-1-0

Plan

Compare resource
to actual state

Upgrade pods sequentially

ClickHouse
Resource
Definition

Division of responsibilities -- adding a replica

ClickHouse
Operator

Process add replica Create configmap,
statefulset, Pod, PV Boot

Configure monitoring

Send schema Add tables

Join cluster

Operator = Deployment + Operation + Monitoring

ClickHouse
Operator

your-favorite namespace

ClickHouse
Resource
Definition

z

z

K8s API

Monitoring
data

M
on

it
or

in
g

da
ta

Prometheus

Grafana

System dynamism complicates monitoring

Load
Balancer
Service

Shard 1 Replica 1

Stateful
Set Pod

Persistent
Volume
Claim

Persistent
Volume

Per-replica Config Map

Replica
Service

ClickHouse
Operator

Monitoring data from
a single replica

System dynamism complicates monitoring

Load
Balancer
Service

Shard 1 Replica 1

Stateful
Set Pod

Persistent
Volume
Claim

Persistent
Volume

Per-replica Config Map

Shard 1 Replica 2

Replica
Service

Replica
Service

ClickHouse
Operator

Monitoring data from
two replicas

Speaking of storage, we have options
● Cloud storage:

○ AWS
○ GKE
○ Other cloud providers

● Local storage
○ emptyDir
○ hostPath
○ local Complex

Network access

Simple

Fast

Use storageClassName to bind storage
Use kubectl to find available storage classes:
 kubectl describe StorageClass

Bind to default storage:
 spec:
 storageClassName: default

Bind to gp2 type
 spec:
 storageClassName: gp2

Explicit data placement is simplest for users
 clusters:
 - name: zoned
 layout:
 shardsCount: 3
 replicas:
 - templates:
 podTemplate: clickhouse-in-zone-us-west-2a
 - templates:
 podTemplate: clickhouse-in-zone-us-west-2b

Replicas use different
pod templates

Templates encapsulate
affinity to specific zone

Templates also enable portability
ClickHouse
Resource
Definition

PodLoad
Balance

PodPod

Pod Pod
Load

BalanceLoad
Balance

Load
BalanceLoad

Balance Pod Pod

Load
BalanceLoad

Balance Pod Pod

Minikube Multi-AZ Deployment

(Differences mostly
in templates)

ClickHouse operator roadmap
● Backup and restore
● Reclaim storage in new clusters
● Services

○ Per node access
○ External vs. internal endpoints

● Security
○ Certificate management across nodes
○ Encrypted storage

Using
Kubernetes to
Build Analytic
Solutions

Complete solution with dashboards and
predictive analytics

Kubernetes benefit #1

Kafka Consumer

Apps

ClickHouse

AppsContent
Sources

GrafanaML Pipeline

Ability to integrate full
solutions with multiple
microservices

Kubernetes benefit #2

ClickHouse

Internal
Service

Monitoring
Stack

Independently
scaled analytics
backend for
different services

ClickHouse

Customer-
Facing Web

Analytics
Stack

Separate
sharding,
replication,
storage, etc.

Biggest long-range opportunity

Kubernetes democratizes data
warehouse access

Operators enable effective data management

ClickHouse Kubernetes operator enables any
application to add high-performance analytics

Thank you!

Questions?

Presenters:
rhodges@altinity.com
vladislav@altinity.com

ClickHouse Operator:
https://github.com/Altinity/clickhouse-operator

ClickHouse:
https://github.com/yandex/ClickHouse

Altinity:
https://www.altinity.com

mailto:rhodges@altinity.com
mailto:vladislav@altinity.com
https://github.com/Altinity/clickhouse-operator
https://github.com/yandex/ClickHouse
https://www.altinity.com

