2

Continuous Profiling Go
Application running in
Kubernetes

/debug/pprof/

Types of profiles available:
Count Profile
6797 allocs

358 block

0 cmdline
322 goroutine
6797 heap

164 mutex

0 profile

89 threadcreate
0 trace

full goroutine stack dump

Profile Descriptions:

« allocs: A sampling of all past memory allocations

« block: Stack traces that led to blocking on synchronization primitives

« cmdline: The command line invocation of the current program

« goroutine: Stack traces of all current goroutines

« heap: A sampling of memory allocations of live objects. You can specify the gc GET parameter to run GC before taking the heap sample.

« mutex: Stack traces of holders of contended mutexes

« profile: CPU profile. You can specify the duration in the seconds GET parameter. After you get the profile file, use the go tool pprof command to investigate the profile.

« threadcreate: Stack traces that led to the creation of new OS threads

« trace: A trace of execution of the current program. You can specify the duration in the seconds GET parameter. After you get the trace file, use the go tool trace command to investigate the trace.

@gianarb / gianarb.it

$ go tool pprof http://localhost:14271/debug/pprof/allocs?debug=1

Fetching profile over HTTP from http://localhost:14271/debug/pprof/allocs?debug=1
Saved profile in /home/gianarb/pprof/pprof.alloc_objects.alloc_space.inuse_objects.inuse_space.001.pb.gz
Type: inuse_space
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) text
Showing nodes accounting for 1056.92kB, 100% of 1056.92kB total
Showing top 10 nodes out of 21
flat flat% sum% cum cum%
544.67kB 51.53% 51.53% 544.67kB 51.53% github.com/jaegertracing/jaeger/vendor/google.golang.org/grpc/internal/transport.newBufWriter
512.25kB 48.47% 100% 512.25kB 48.47% time.startTimer
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/processors.(*ThriftProcessor).processBuffer
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/processors.NewThriftProcessor.func2
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter.(*MetricsReporter).EmitBatch
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter/grpc.(*Reporter).EmitBatch
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter/grpc.(*Reporter).send
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/proto-gen/api_v2.(*collectorServiceClient).PostSpans
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/thrift-gen/jaeger.(*AgentProcessor).Process
0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/thrift-gen/jaeger.(*agentProcessorEmitBatch).Process

OO OO OoOOCoOoOo

@gianarb / gianarb.it

http://localhost:14271/debug/pprof/allocs?debug=1

Type: inuse_space runime
Showing nodes accounting for 1056.92kB, 100% of 1056.92kB total 00£1056.92KB (100%)

‘/5 12.25kB [544.67kB
processors e
NewThriftProcessor (*addrConn)
func: resetTransport
0 0f 512.25kB (48.47%) 0 of 544.67kB (51.53%)
512.25kB 544.67kB
processors e
(*ThriftProcessor) (*addrConn)
00F51225KB (48.47%) 00f 544.67kB (51.53%)
512.25kB 544.67kB
y
Jacger e
(*AgentProcessor) (*addrConn)
Process createTransport
0 0f 512.25kB (48.47%) 0 0f 544.67kB (51.53%)
512.25kB 544.67kB
¢ A
i jaeger T
¢ aﬂ"“"m‘f":::f"'“sﬂ'"') NewClientTransport
i) 0.0f 544.67KB (51.53%)
512.25kB 544.67kB
A A
reporter =
(’M"'E':fg;‘c’:’“” newHTTh2Clent
00f51225KB (48.47%) SetFHOnnCL %
512.25kB 544.67kB
y \
8grpe
et pevtame
R 00 544.67kB (51.53%)
512.25kB 544.67kB

y transport
arpe .
Croviee) newBufWriter

0 of 512.25kB (48.47%)

| 544.67kB (51.53%)

Overview v

Package pprof serves via its HTTP server runtime profiling data in the format expected by the pprof visualization
tool.

The package is typically only imported for the side effect of registering its HTTP handlers. The handled paths all
begin with /debug/pprof/.

To use pprof, link this package into your program:
import _ "net/http/pprof"

If your application is not already running an http server, you need to start one. Add "net/http" and "log" to your
imports and the following code to your main function:

go func() {
log.Println(http.ListenAndServe("localhost:6060", nil))
O

Then use the pprof tool to look at the heap profile:

go tool pprof http://localhost:6060/debug/pprof/heap

@glanarp / glanarp.It

Gianluca Arbezzano
Software Engineer sold to reliability @InfluxData

e https://gianarb.it
e @gianarb

What | like:
e | make dirty hacks that look awesome
e | grow my vegetables @9 ®
e Travel for fun and work

ianarb / gianarb.it

https://gianarb.it

Applications make troubles
in production

How developers extract profiles from
production?

2

The common way is by bothering who
better knows IPs
and how to connect to prod

2

Usually they have better thing to do than
babysitting SWE

2

But it is not a SWE fault because they do
not have a good way to retrieve what
they need to be effective at their work.

you never know when you will need a
profile, and for what or from where

2

L et's summarize issues

Developer are usually the profile stakeholder

Production is not always a comfortable place to interact with

You do not know when you will need a profile, it will may be from 2 weeks ago
Cloud, Kubernetes increases the amount of noise. A lot more binaries, they go
up and down continuously. Containers that OOMs gets restarted
transparency, there is a lot of postmortem analysis going on

@gianarb / gianarb.it

2

Do you have the same problem with your
metrics/logs?!

Are you ready to know
a possible solution?

Spoiler Alert: it is part of the title

Metrics/Logs

They are continuously collected
and stored in a centralized place.

@gianarb / gianarb.it

Follow me

collector

@gianarb / gianarb.it

github.com/profefe

application

Y

net/http/pprof

profefe-collector

R runtime/pprof

pull cron job push

GET
/debug/pprof/profile

@gianarb / gianarb.it

developer

github.com/profefe

application

profefe-agent

timer @

runtime/pprof

push

POST
[apilprofiles
metadata
prof.pb.gz

Y

o}

A

profefe-collector

query

GET
/api/profiles
metadata

A

developer

The pull based solution was easier to implement for us:

e Too many applications to re-instrument with the sdk
e Our services already expose pprof http handler by default

@gianarb / gianarb.it

@gianarb / gianarb.it

@gianarb / gianarb.it

2

Kubernetes provides
APIs!

1+1=2

2

Let's make a cronjob that

uses the k8s api
github.com/profefe/kube-profefe

Now profiles are
continuously gathered
from all your
application

How it works

Golang has an http handler that exposes pprof over http, via annotation we can specify if a pod has profiles to capture and
with other annotations we can configure path and port.

The annotations are:

« profefe.com/enable=true is the annotation that tells kube-profefe to capture profiles from that pod.
« profefe.com/port=8085 tells kube-profefe where to look for a pprof http server. By default it is 6060.

« profefe.com/service=frontend tells kube-profefe the name of the service usable to lookup the profile. If the annotation
is not specified it uses the pod name. My suggestion is to set this annotation because pods are ephemeral and lookup

by pod name may be hard to do.
« profefe.com/path=/debug/pprof tells kube-profefe where to look for a pprof http server. By default it is /debug/pprof .

@gianarb / gianarb.it

profefe-collector €

—

@ ""/'. ~— 1
\\; P 4 GET

/apilprofiles
@ @ metadata
v [\ @
4 .l ‘/?(—

developer

@gianarb / gianarb.it

query

How to let developers
free to get what they
want by themself?

' developer

S kubectl profefe

S kubectl profefe capture -n ops influxdb-v2

2

Cool things: Merge profile

go tool pprof
‘http://repo.pprof.cluster.local:10100/api/0/profiles/merge?service=auth&type=cpu&from=2019-05-30T11:49:00&t0=2019

-05-30T12:49:00&labels=version=1.0.0'

Fetching profile over HTTP from http://localhost:10100/api/0/profiles...
Type: cpu
Entering interactive mode (type "help" for commands,
(pprof) top
Showing nodes accounting for 43080ms, 99.15% of 43450ms total
Dropped 53 nodes (cum <= 217.25ms)
Showing top 10 nodes out of 12
flat flat% sum% cum cum%
42220ms 97.17% 97.17% 42220ms 97.17% main.load
860ms 1.98%99.15% 860ms 1.98% runtime.nanotime
0 0%99.15% 21050ms 48.45% main.bar
0 0%99.15% 21170ms 48.72% main.baz

o" for options)

@gianarb / gianarb.it

Pod 150 *
6 =

900 pprof/hour

@gianarb / gianarb.it

Analyze pprof profiles

e Easy correlation with other metrics such as mem/cpu usage
e All those profiles contains useful information

e Cross service utilization for performance optimization
o Give me the top 10 cpu intensive function in all system

e Building bridges between dev and ops

@gianarb / gianarb.it

2

Analytics pipeline @ influxdb

~ push samples as
p time series data
0 Oo
P
triggers

* amazon CreateObiject
S3

@gianarb / gianarb.it

store to

Links:

https://qithub.com/profefe/profefe
https://ai.gooqgle/research/pubs/pub36575
https://jvns.ca/blog/2017/09/24/profiling-go-with-pprof/

https://qgithub.com/google/pprof
https://qgianarb.it

@gianarb / gianarb.it

https://github.com/profefe/profefe
https://ai.google/research/pubs/pub36575
https://jvns.ca/blog/2017/09/24/profiling-go-with-pprof/
https://github.com/google/pprof
https://gianarb.it

Thanks

