
@gianarb / gianarb.it

Continuous Profiling Go
Application running in

Kubernetes

@gianarb / gianarb.it

@gianarb / gianarb.it

$ go tool pprof http://localhost:14271/debug/pprof/allocs?debug=1

Fetching profile over HTTP from http://localhost:14271/debug/pprof/allocs?debug=1
Saved profile in /home/gianarb/pprof/pprof.alloc_objects.alloc_space.inuse_objects.inuse_space.001.pb.gz
Type: inuse_space
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) text
Showing nodes accounting for 1056.92kB, 100% of 1056.92kB total
Showing top 10 nodes out of 21
 flat flat% sum% cum cum%
 544.67kB 51.53% 51.53% 544.67kB 51.53% github.com/jaegertracing/jaeger/vendor/google.golang.org/grpc/internal/transport.newBufWriter
 512.25kB 48.47% 100% 512.25kB 48.47% time.startTimer
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/processors.(*ThriftProcessor).processBuffer
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/processors.NewThriftProcessor.func2
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter.(*MetricsReporter).EmitBatch
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter/grpc.(*Reporter).EmitBatch
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/cmd/agent/app/reporter/grpc.(*Reporter).send
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/proto-gen/api_v2.(*collectorServiceClient).PostSpans
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/thrift-gen/jaeger.(*AgentProcessor).Process
 0 0% 100% 512.25kB 48.47% github.com/jaegertracing/jaeger/thrift-gen/jaeger.(*agentProcessorEmitBatch).Process

http://localhost:14271/debug/pprof/allocs?debug=1

@gianarb / gianarb.it

@gianarb / gianarb.it

@gianarb / gianarb.it

Gianluca Arbezzano
Software Engineer sold to reliability @InfluxData

● https://gianarb.it
● @gianarb

What I like:
● I make dirty hacks that look awesome
● I grow my vegetables 🍅🌻🍆
● Travel for fun and work

https://gianarb.it

@gianarb / gianarb.it

@gianarb / gianarb.it

Applications make troubles
in production

@gianarb / gianarb.it

How developers extract profiles from
production?

@gianarb / gianarb.it

The common way is by bothering who
better knows IPs

and how to connect to prod

@gianarb / gianarb.it

Usually they have better thing to do than
babysitting SWE

@gianarb / gianarb.it

But it is not a SWE fault because they do
not have a good way to retrieve what

they need to be effective at their work.

@gianarb / gianarb.it

you never know when you will need a
profile, and for what or from where

@gianarb / gianarb.it

Let’s summarize issues
● Developer are usually the profile stakeholder
● Production is not always a comfortable place to interact with
● You do not know when you will need a profile, it will may be from 2 weeks ago
● Cloud, Kubernetes increases the amount of noise. A lot more binaries, they go

up and down continuously. Containers that OOMs gets restarted
transparency, there is a lot of postmortem analysis going on

@gianarb / gianarb.it

Do you have the same problem with your
metrics/logs?!

@gianarb / gianarb.it

Are you ready to know
a possible solution?

Spoiler Alert: it is part of the title

@gianarb / gianarb.it

Metrics/Logs
They are continuously collected
and stored in a centralized place.

@gianarb / gianarb.it

Follow me

APP

APP

APP

APP

APP

collector repoAPI

@gianarb / gianarb.it

github.com/profefe

@gianarb / gianarb.it

github.com/profefe

@gianarb / gianarb.it

The pull based solution was easier to implement for us:

● Too many applications to re-instrument with the sdk
● Our services already expose pprof http handler by default

@gianarb / gianarb.it

@gianarb / gianarb.it

APP

APP

APP
APP

APP

APP

APP

APP

APP

APP
APP

APP

APP

APP

APP

@gianarb / gianarb.it

Kubernetes provides
APIs!

@gianarb / gianarb.it

1 + 1 = 2

@gianarb / gianarb.it

Let’s make a cronjob that
uses the k8s api

github.com/profefe/kube-profefe

@gianarb / gianarb.it

Now profiles are
continuously gathered
from all your
application

@gianarb / gianarb.it

@gianarb / gianarb.it

@gianarb / gianarb.it

How to let developers
free to get what they
want by themself?

@gianarb / gianarb.it

$ kubectl profefe

@gianarb / gianarb.it

$ kubectl profefe capture -n ops influxdb-v2

@gianarb / gianarb.it

Cool things: Merge profile
go tool pprof
'http://repo.pprof.cluster.local:10100/api/0/profiles/merge?service=auth&type=cpu&from=2019-05-30T11:49:00&to=2019
-05-30T12:49:00&labels=version=1.0.0'

Fetching profile over HTTP from http://localhost:10100/api/0/profiles...
Type: cpu
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) top
Showing nodes accounting for 43080ms, 99.15% of 43450ms total
Dropped 53 nodes (cum <= 217.25ms)
Showing top 10 nodes out of 12
 flat flat% sum% cum cum%
 42220ms 97.17% 97.17% 42220ms 97.17% main.load
 860ms 1.98% 99.15% 860ms 1.98% runtime.nanotime
 0 0% 99.15% 21050ms 48.45% main.bar
 0 0% 99.15% 21170ms 48.72% main.baz

@gianarb / gianarb.it

 Pod 150 *
 6 =

 900 pprof/hour

@gianarb / gianarb.it

Analyze pprof profiles
● Easy correlation with other metrics such as mem/cpu usage
● All those profiles contains useful information
● Cross service utilization for performance optimization

○ Give me the top 10 cpu intensive function in all system

● Building bridges between dev and ops

@gianarb / gianarb.it

Analytics pipeline

store to

triggers
CreateObject

push samples as
time series data

@gianarb / gianarb.it

Links:
● https://github.com/profefe/profefe
● https://ai.google/research/pubs/pub36575
● https://jvns.ca/blog/2017/09/24/profiling-go-with-pprof/
● https://github.com/google/pprof
● https://gianarb.it

https://github.com/profefe/profefe
https://ai.google/research/pubs/pub36575
https://jvns.ca/blog/2017/09/24/profiling-go-with-pprof/
https://github.com/google/pprof
https://gianarb.it

@gianarb / gianarb.it

Thanks

