
Centralizing Kubernetes and Container 
Operations
Oleg Chunikhin | CTO, Kublr



Introductions
Oleg Chunikhin
CTO, Kublr

ü 20 years in software architecture & development

ü Working w/ Kubernetes since its release in 2015

ü Software architect behind Kublr—an enterprise 
ready container management platform

ü Twitter @olgch



History

• Custom software development company

• Dozens of projects per year
• Varying target environments: clouds, on-prem, 

hybrid

• Recurring need for unified application delivery 
and ops platform w/ monitoring, logs, security, 
multiple env, ...

@olgch; @kublr



Docker and Kubernetes to the Rescue

• Docker is great, but local

• Kubernetes is great... when it is up and running
• Who sets up and operates K8S clusters?

• Who takes care of operational aspects at scale?

• How do you provide governance and ensure 
compliance?

@olgch; @kublr



Enterprise Kubernetes Needs

Developers SRE/Ops/DevOps/SecOps
• Self-service
• Compatible
• Conformant
• Configurable
• Open & Flexible

• Org multi-tenancy
• Single pane of glass
• Operations
• Monitoring
• Log collection
• Image management
• Identity management• Security

• Reliability
• Performance
• Portability

@olgch; @kublr



Kubernetes Management Platform Wanted
• Portability – clouds, on-prem, hybrid, air-gapped, different OS’

• Centralized multi-cluster operations saves resources – many 
environments (dev, prod, QA, ...), teams, applications

• Self-service and governance for Kubernetes operations

• Reliability – cluster self-healing, self-reliance
• Limited management profile – cloud and K8S API

• Architecture – flexible, open, pluggable, compatible

• Sturdy – secure, scalable, modular, HA, DR etc.

@olgch; @kublr



@olgch; @kublr

Automation

Ingress

Custom
Clusters

Infrastructure

Logging Monitoring

Observability

API Usage
Reporting

RBAC IAM

Air Gap TLS

Certificate
Rotation

Audit

Storage Networking Container
Registry

CI / CD App Mgmt

Infrastructure

Container Runtime Kubernetes

OPERATIONS SECURITY &
GOVERNANCE



Central Control Plane: Operations
K8S Clusters

Cloud(s)

Data
center

API UI

Log collection

Operations

Monitoring

Authn and authz, SSO, federation

Audit Image Repo

Infrastructure management

Backup & DR

Dev

K8S API

Cloud API

Prod

PoC

Dev

@olgch; @kublr



Central Control Plane: Operations

@olgch; @kublr



Infrastructure
Automation

Cluster: Self-Sufficiency

Central
control
planeMASTER

KUBLR

overlay network, discovery, 
connectivity

K8s Master Components:
etcd, scheduler, API, controller

Docker

KUBELET KUBLRKUBELET

NODE

Docker

overlay network, discovery, 
connectivity

Infrastructure and
Application containers

Orchestration
Store Secrets

discovery

Simple 
orchestration and 

configuration agent

@olgch; @kublr



Cluster: Portability
• (Almost) everything runs in containers

• Simple (single-binary) management agent

• Minimal store requirements
• Shared, eventually consistent
• Secure: RW files for masters, RO for nodes
• Thus the store can be anything:

S3, SA, NFS, rsynced dir, provided files, ...

• Minimal infra automation requirements
• Configure and run configuration agent
• Enable access to the store
• Can be AWS CF, Azure ARM, BOSH,

Ansible, ...

• Load balancer is not required for multi-master;
each agent can independently fail over to a healthy 
master

Infrastructure
Automation

MASTE
R KUBLR

overlay network, discovery, 
connectivity

K8s Master Components:
etcd, scheduler, API, 
controller

Docker

KUBELET KUBLRKUBELET

NOD
E

Docker
overlay network, 
discovery, connectivity

Infrastructure and
Application containers

Orchestration
Store Secrets

discovery

@olgch; @kublr



Cluster: Reliability
• Rely on underlying platform as much as 

possible
• ASG on AWS
• IAM on AWS for store access
• SA on Azure, S3 on AWS
• ARM on Azure, CF on AWS

• Minimal infrastructure SLA
tolerate temporary failures

• Multi-muster API failover on nodes

• Resource management, memory 
requests and limits for OS and k8s 
components

Infrastructure
Automation

MASTER
KUBLR

overlay network, discovery, 
connectivity

K8s Master Components:
etcd, scheduler, API, controller

Docker

KUBELET KUBLRKUBELET

NODE

Docker
overlay network, discovery, 
connectivity

Infrastructure and
Application containers

Orchestration
Store

@olgch; @kublr



Central Control Plane: Logs and Metrics
K8S Clusters

Cloud(s)

Data
center

API UI Operations

Authn and authz, SSO, federation

Image Repo

Infrastructure management

Backup & DR

Dev

K8S API

Cloud API

Prod

PoC

Dev

Log collection Monitoring

Audit

@olgch; @kublr



Centralized Monitoring and Log Collection.
Why Bother?

• Prometheus and ELK are heavy and not easy to operate;
need attention and at least 4-8 Gb RAM... each, per cluster

• Cloud/SaaS monitoring is not always permitted or available

• Existing monitoring is often not container-aware

• No aggregated view and analysis
• No alerting governance

@olgch; @kublr



K8S Monitoring with Prometheus

• Discover nodes, services, pods 
via K8S API

• Query metrics from discovered 
endpoints

• Endpoint are accessed directly 
via internal cluster addresses

Kubernetes Cluster

Prometheus

Nodes

K8S API

Grafana

Pods

Discovery

Srv
Metrics

@olgch; @kublr



Centralized Monitoring
Cluster registry

PROMETHEUSGrafana
K8S Proxy API

nodes, pods,
service endpoints

Ship externally
Ship externally

Prometheus
config

Prometheus
data

Configurator

Control plane

KUBERNETES CLUSTER
Prometheus

(collector)
Prometheus

(collector)

@olgch; @kublr



Centralized Monitoring: Considerations
• Prometheus resource usage tuning
• Long-term storage (m3)
• Configuration file growth with many clusters

• Metrics labeling
• Additional load on API server

@olgch; @kublr



Centralized Monitoring

@olgch; @kublr



K8S Logging with Elasticsearch

• Fluentd runs on nodes

• OS, K8S, and container logs 
collected and shipped to 
Elasticsearch

• Kibana for visualization

Kubernetes Cluster

Elasticsearch

Kibana

Pods

Logs

@olgch; @kublr



Prometheus
(collector)

RabbitMQ

Centralized Log Collection

Cluster registry

K8S Proxy API

Port 
forwarding
MQTT Ship externally

Messaging
config

Configurator

Control plane

RabbitMQ
Shovel

ElasticsearchLogstash

Fluentd

KUBERNETES CLUSTER

filter

filter analyze
Ship externally

MQTT
Forwarder

filter

@olgch; @kublr



Centralized Log Collection: Considerations
• Tune Elasticsearch resource usage
• Take into account additional load on API server
• Log index structure normalization

{
"data": {

"elasticsearch": {
"version": "6.x"

}
}

}

{
"flatData": [

{
"key": "elasticsearch.version",
"type": "string",
"key_type": "elasticsearch.version.string",
"value_string": "6.x"

},
...

]
}

@olgch; @kublr http://smnh.me/indexing-and-searching-arbitrary-json-data-using-elasticsearch/

http://smnh.me/indexing-and-searching-arbitrary-json-data-using-elasticsearch/


The Rest: Considerations
• Identity management

Use Identity Broker (e.g. KeyCloak): Users, Authn, Autzn, SSO, RBAC, 

Federation, ...

• Backup and disaster recovery

K8s metadata + app data/volumes: full cluster recovery or copy

• Docker image management

Docker image registry (e.g. Nexus, Artifactory, Docker Hub);

image scanning;
air-gapped or isolated environment: image registries proxying and caching, 
“system” images

@olgch; @kublr



Q&A

@olgch; @kublr

Take Kublr for a test drive!
kublr.com/deploy

Free non-production license.



Oleg Chunikhin
Chief Technology Officer

oleg@kublr.com
@olgch

Kublr | kublr.com
@kublr

Stay in touch! Signup for our 
newsletter at kublr.com


