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ü 20 years in software architecture & development

ü Working w/ Kubernetes since its release in 2015

ü Software architect behind Kublr—an enterprise 
ready container management platform

ü Twitter @olgch



History

• Custom software development company

• Dozens of projects per year
• Varying target environments: clouds, on-prem, 

hybrid

• Recurring need for unified application delivery 
and ops platform w/ monitoring, logs, security, 
multiple env, ...
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Docker and Kubernetes to the Rescue

• Docker is great, but local

• Kubernetes is great... when it is up and running
• Who sets up and operates K8S clusters?

• Who takes care of operational aspects at scale?

• How do you provide governance and ensure 
compliance?
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Enterprise Kubernetes Needs

Developers SRE/Ops/DevOps/SecOps
• Self-service
• Compatible
• Conformant
• Configurable
• Open & Flexible

• Org multi-tenancy
• Single pane of glass
• Operations
• Monitoring
• Log collection
• Image management
• Identity management• Security

• Reliability
• Performance
• Portability
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Kubernetes Management Platform Wanted
• Portability – clouds, on-prem, hybrid, air-gapped, different OS’

• Centralized multi-cluster operations saves resources – many 
environments (dev, prod, QA, ...), teams, applications

• Self-service and governance for Kubernetes operations

• Reliability – cluster self-healing, self-reliance
• Limited management profile – cloud and K8S API

• Architecture – flexible, open, pluggable, compatible

• Sturdy – secure, scalable, modular, HA, DR etc.
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Central Control Plane: Operations
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Central Control Plane: Operations
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Cluster: Portability
• (Almost) everything runs in containers

• Simple (single-binary) management agent

• Minimal store requirements
• Shared, eventually consistent
• Secure: RW files for masters, RO for nodes
• Thus the store can be anything:

S3, SA, NFS, rsynced dir, provided files, ...

• Minimal infra automation requirements
• Configure and run configuration agent
• Enable access to the store
• Can be AWS CF, Azure ARM, BOSH,

Ansible, ...

• Load balancer is not required for multi-master;
each agent can independently fail over to a healthy 
master
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Cluster: Reliability
• Rely on underlying platform as much as 

possible
• ASG on AWS
• IAM on AWS for store access
• SA on Azure, S3 on AWS
• ARM on Azure, CF on AWS

• Minimal infrastructure SLA
tolerate temporary failures

• Multi-muster API failover on nodes

• Resource management, memory 
requests and limits for OS and k8s 
components
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Central Control Plane: Logs and Metrics
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Centralized Monitoring and Log Collection.
Why Bother?

• Prometheus and ELK are heavy and not easy to operate;
need attention and at least 4-8 Gb RAM... each, per cluster

• Cloud/SaaS monitoring is not always permitted or available

• Existing monitoring is often not container-aware

• No aggregated view and analysis
• No alerting governance
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K8S Monitoring with Prometheus

• Discover nodes, services, pods 
via K8S API

• Query metrics from discovered 
endpoints

• Endpoint are accessed directly 
via internal cluster addresses
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Centralized Monitoring
Cluster registry

PROMETHEUSGrafana
K8S Proxy API

nodes, pods,
service endpoints

Ship externally
Ship externally

Prometheus
config

Prometheus
data

Configurator

Control plane

KUBERNETES CLUSTER
Prometheus

(collector)
Prometheus

(collector)

@olgch; @kublr



Centralized Monitoring: Considerations
• Prometheus resource usage tuning
• Long-term storage (m3)
• Configuration file growth with many clusters

• Metrics labeling
• Additional load on API server
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Centralized Monitoring
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K8S Logging with Elasticsearch

• Fluentd runs on nodes

• OS, K8S, and container logs 
collected and shipped to 
Elasticsearch

• Kibana for visualization
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Centralized Log Collection: Considerations
• Tune Elasticsearch resource usage
• Take into account additional load on API server
• Log index structure normalization

{
"data": {

"elasticsearch": {
"version": "6.x"

}
}

}

{
"flatData": [

{
"key": "elasticsearch.version",
"type": "string",
"key_type": "elasticsearch.version.string",
"value_string": "6.x"

},
...

]
}

@olgch; @kublr http://smnh.me/indexing-and-searching-arbitrary-json-data-using-elasticsearch/

http://smnh.me/indexing-and-searching-arbitrary-json-data-using-elasticsearch/


The Rest: Considerations
• Identity management

Use Identity Broker (e.g. KeyCloak): Users, Authn, Autzn, SSO, RBAC, 

Federation, ...

• Backup and disaster recovery

K8s metadata + app data/volumes: full cluster recovery or copy

• Docker image management

Docker image registry (e.g. Nexus, Artifactory, Docker Hub);

image scanning;
air-gapped or isolated environment: image registries proxying and caching, 
“system” images
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Q&A
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Take Kublr for a test drive!
kublr.com/deploy

Free non-production license.



Oleg Chunikhin
Chief Technology Officer

oleg@kublr.com
@olgch

Kublr | kublr.com
@kublr

Stay in touch! Signup for our 
newsletter at kublr.com


