Calico Networking
with eBPF

Shaun Crampton, Core Developer for Project Calico
Chris Hoge, Developer Advocate for Project Calico

What prompted the team ‘ olo !
to add another dataplane |
to Calico?

Calico’s Pluggable Dataplane

\T
/__,,/,,,//,,.

C\-
LL
all
o
()
R
i)
(C
>

(extended) Berkeley Packet Filter

An in-kernel virtual machine that “gives super-powers to
Linux”

Allows you to attach mini-programs to low-level hooks in
the kernel

Programs verified to ensure they are “safe”
o e.g.can’t crash the system, access invalid memory addresses, will
terminate

Programs can only interact with the rest of the kernel
through helper functions (there’s a limit to super powers!)

The clang compiler can be used to build eBPF programs
or you can write them directly in byte-code

What sort of things can you 4 T ‘

do with eBPF? 9 %

eBPF Features and Uses

e Security!
o Aseccomp filter mode allows users to write a program to determine
if a system call is allowed.
e Logging and Tracing!
o Gather information directly from the kernel about what calls are
being run and how much time is being spent in them.
e Network Routing and Packet Filtering!

o It'sright there in the name. There are many different networking
hooks - with varying performance and richness in capabilities.

How did you figure out
what to build?

What was your design and
development process?

How is this different from
the current
implementation?

What improvements does
eBPF bring to Calico?

Pod-to-pod throughput and CPU

40 Gbps network, running gperf in single pod

Throughput (higher is better) CPU usage (lower is better)
B Standard Linux networking [l eBPF B Standard Linux networking [l eBPF
40.0
150%
30.0

100%

50%

Throughput (GBit/s)
N
o
o

CPU% per GBit/s

10.0

0%
MTU=1440 MTU=8940 MTU=1440 MTU=8940

0.0

Native handling of Services: First packet latency

TCP connect time

@ iptables IPVS @ eBPF
1.500
1.000
m
E 8
Q
E B
©
2 |
8 0500 t !
— i
0.000

0 2500 5000 7500 10000

Number of services

Native handling of Services: More efficient updates

CPU usage with 5k services, churning one service

kube-proxy IPVS == kube-proxy iptables == Calico BPF

200
150
R
S 100
o
O
50
0

50 100 150 200 250

Time (s)

Native handling of Services: Direct Server Return

Kube-proxy packet path

External
client

1: kube-proxy DNAT+SNAT
replaces source IP with its
own IP and dest IP with
pod IP

3: Pod sees|ingress node

iptables § 2: Packet as source; responds
DNAT = forwarded to
SNAT 3 service pod. Service

R Pod

Kubernetes node Kubernetes node

Calico eBPF

External
client

5: If network allows, packet
returns directly (otherwise

1: BPF program spots returns via ingress node)

packet to service;
makes load balancing
decision and sends

packet to node hostin

the pod 2: BPF program does DNAT

to pod's IP

3: Pod sees real source IP
|

4: Pod responds; BPF

program reverses DNAT

Service
Pod

Kubernetes node Kubernetes node

Native handling of Services: Direct Server Return

40 Gbps network, 1k services

Connect time (ms) and Total time (ms)

B Totaltime [Connect time

1.5

0.5

kube-proxy kube-proxy Calico BPF Calico BFP
iptables IPVS non-direct direct return

Mode

‘ oox

How can | try it out?

How to try it out!

e Thisis atech preview, which means it’s not ready for
production... yet!

e https://docs.projectcalico.org/getting-started/kubernetes/trying-ebpf

Q.
nfd
X
()
-
L
njd
(0]
%

Thank you!

Questions?

EEN

L0

https://projectcalico.org

¥ @projectcalico

® https://github.com/projectcalico/community
i https://slack.projectcalico.org

® https://discuss.projectcalico.org

References
e Introducingthe Calico eBPF Dataplane (projectcalico)
e A Thorough Introduction to eBPF (lwn)
e Aseccomp overview (lwn)
e eBPF Tracing Tools

