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● What is distributed tracing
● Jaeger in a HotROD
● Jaeger under the hood
● Jaeger v1.0
● Roadmap
● Project governance, public meetings, contributions
● Q & A

Agenda
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● Software engineer at Uber
○ NYC Observability team

● Founder of Jaeger
● Co-author of OpenTracing Specification

About

3



4

   BILLIONS times a day!
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How do we know
what’s going on?



Metrics / Stats
● Counters, timers, 

gauges, histograms
● Four golden signals

○ utilization
○ saturation
○ throughput
○ errors

● Prometheus, Grafana

We use MONITORING tools
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Logging
● Application events
● Errors, stack traces
● ELK, Splunk, Sentry

Monitoring tools must “tell 
stories” about your system



2017/12/04 21:30:37 scanning error: bufio.Scanner: token too long

How do you debug this?

7

WHAT IS THE CONTEXT?



Metrics and logs don’t cut it anymore!

Metrics and logs are
● per-instance
● missing the context

It’s like debugging 
without a stack trace
We need to monitor
distributed transactions
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Distributed Tracing In A Nutshell
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Let’s look at some traces
demo time: http://bit.do/jaeger-hotrod
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http://bit.do/jaeger-hotrod
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Distributed Tracing Systems



Jaeger under the hood
Architecture, etc.
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• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Official CNCF project since Sep 2017

• Built-in OpenTracing support

• http://jaegertracing.io 

Jaeger - /ˈyāɡər/, noun: hunter
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http://jaegertracing.io


Community

● 10 full time engineers at Uber and Red Hat

● 80+ contributors on GitHub

● Already used by many organizations

○ including Uber, Symantec, Red Hat, Base CRM, 

Massachusetts Open Cloud, Nets, FarmersEdge, 

GrafanaLabs, Northwestern Mutual, Zenly
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Technology Stack

● Backend components in Go
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● Web UI in React/Javascript
● OpenTracing instrumentation libraries
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Architecture
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Host or Container

Application

Instrumentation

OpenTracing API

jaeger-client

jaeger-agent 
(Go)
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(Go)

memory queue

Data Store
(Cassandra)
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Control Flow

Trace
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Control Flow Trace Reporting
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Adaptive 
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data mining
pipeline



Data model
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Understanding Sampling

Tracing data can exceed business traffic.

Most tracing systems sample transactions:

● Head-based sampling: the sampling decision is made 
just before the trace is started, and it is respected by 
all nodes in the graph

● Tail-based sampling: the sampling decision is made 
after the trace is completed / collected
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Jaeger 1.0
Released 06-Dec-2017
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Jaeger 1.0 Highlights

Announcement: http://bit.do/jaeger-v1 
● Multiple storage backends
● Various UI improvements
● Prometheus metrics by default
● Templates for Kubernetes deployment

○ Also a Helm chart
● Instrumentation libraries
● Backwards compatibility with Zipkin
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http://bit.do/jaeger-v1


Official
● Cassandra 3.4+
● Elasticsearch 5.x, 6.x
● Memory storage

Experimental (by community)
● InfluxDB, ScyllaDB, AWS DynamoDB, …
● https://github.com/jaegertracing/jaeger/issues/638 

Multiple storage backends
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https://github.com/jaegertracing/jaeger/issues/638


● Improved performance in all screens

● Viewing large traces (e.g. 80,000 spans)

● Keyboard navigation

● Minimap navigation, zooming in & out

● Top menu customization

Jaeger UI
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Zipkin drop-in replacement

Collector can accept Zipkin spans:

• JSON v1/v2 and Thrift over HTTP
• Kafka transport not supported yet

Clients:

• B3 propagation
• Jaeger clients in Zipkin environment
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● Metrics
○ --metrics-backend

■ prometheus (default), expvar

○ --metrics-http-route
■ /metrics (default)

● Scraping Endpoints
○ Query service - API port 16686
○ Collector - HTTP API port 14268
○ Agent - sampler port 5778

Monitoring
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Roadmap
Things we are working on
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● APIs have endpoints with different QPS

● Service owners do not know the full impact of 

sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

Adaptive Sampling
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● Based on Kafka and Apache Flink

● Support aggregations and data mining

● Examples:
○ Pairwise dependency graph

○ Path-based, per endpoint dependency graph

○ Latency histograms by upstream caller

Data Pipeline
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Service Dependency Graph



Does Dingo Depend on Dog?
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Latency Histogram
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Project & Community
Contributors are welcome
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Contributing
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Contributing

• Agree to the Certificate of Origin
• Sign all commits (git commit -s)
• Test coverage cannot go ↓ (backend - 100%)
• Plenty of work to go around

– Backend
– Client libraries
– Kubernetes templates
– Documentation
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References

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Online Community Meetings
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https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit


Q & A
Open Discussion
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