
Introducing
Jaeger 1.0
Yuri Shkuro (Uber Technologies)

CNCF Webinar Series, Jan-16-2018

1

● What is distributed tracing
● Jaeger in a HotROD
● Jaeger under the hood
● Jaeger v1.0
● Roadmap
● Project governance, public meetings, contributions
● Q & A

Agenda

2

● Software engineer at Uber
○ NYC Observability team

● Founder of Jaeger
● Co-author of OpenTracing Specification

About

3

4

 BILLIONS times a day!

5

How do we know
what’s going on?

Metrics / Stats
● Counters, timers,

gauges, histograms
● Four golden signals

○ utilization
○ saturation
○ throughput
○ errors

● Prometheus, Grafana

We use MONITORING tools

6

Logging
● Application events
● Errors, stack traces
● ELK, Splunk, Sentry

Monitoring tools must “tell
stories” about your system

2017/12/04 21:30:37 scanning error: bufio.Scanner: token too long

How do you debug this?

7

WHAT IS THE CONTEXT?

Metrics and logs don’t cut it anymore!

Metrics and logs are
● per-instance
● missing the context

It’s like debugging
without a stack trace
We need to monitor
distributed transactions

8

Distributed Tracing In A Nutshell

9

A

B

C D

E

{context}
{context}

{context}{context}

Unique ID → {context}

Edge service

A

B

E

C

D

time

TRACE

SPANS

Let’s look at some traces
demo time: http://bit.do/jaeger-hotrod

10

http://bit.do/jaeger-hotrod

11

performance
and latency
optimization

distributed
transaction
monitoring

service
dependency

analysis

root cause
analysis

distributed context propagation

Distributed Tracing Systems

Jaeger under the hood
Architecture, etc.

12

• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Official CNCF project since Sep 2017

• Built-in OpenTracing support

• http://jaegertracing.io

Jaeger - /ˈyāɡər/, noun: hunter

13

http://jaegertracing.io

Community

● 10 full time engineers at Uber and Red Hat

● 80+ contributors on GitHub

● Already used by many organizations

○ including Uber, Symantec, Red Hat, Base CRM,

Massachusetts Open Cloud, Nets, FarmersEdge,

GrafanaLabs, Northwestern Mutual, Zenly

14

Technology Stack

● Backend components in Go
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● Web UI in React/Javascript
● OpenTracing instrumentation libraries

15

Architecture

16

Host or Container

Application

Instrumentation

OpenTracing API

jaeger-client

jaeger-agent
(Go)

jaeger-collector
(Go)

memory queue

Data Store
(Cassandra)

jaeger-query
(Go)

jaeger-ui
(React)

Control Flow

Trace
Reporting

Thrift over
TChannel

Control Flow Trace Reporting
Thrift over UDP

Adaptive
Sampling

data mining
pipeline

Data model

17

Understanding Sampling

Tracing data can exceed business traffic.

Most tracing systems sample transactions:

● Head-based sampling: the sampling decision is made
just before the trace is started, and it is respected by
all nodes in the graph

● Tail-based sampling: the sampling decision is made
after the trace is completed / collected

18

Jaeger 1.0
Released 06-Dec-2017

19

Jaeger 1.0 Highlights

Announcement: http://bit.do/jaeger-v1
● Multiple storage backends
● Various UI improvements
● Prometheus metrics by default
● Templates for Kubernetes deployment

○ Also a Helm chart
● Instrumentation libraries
● Backwards compatibility with Zipkin

20

http://bit.do/jaeger-v1

Official
● Cassandra 3.4+
● Elasticsearch 5.x, 6.x
● Memory storage

Experimental (by community)
● InfluxDB, ScyllaDB, AWS DynamoDB, …
● https://github.com/jaegertracing/jaeger/issues/638

Multiple storage backends

21

https://github.com/jaegertracing/jaeger/issues/638

● Improved performance in all screens

● Viewing large traces (e.g. 80,000 spans)

● Keyboard navigation

● Minimap navigation, zooming in & out

● Top menu customization

Jaeger UI

22

Zipkin drop-in replacement

Collector can accept Zipkin spans:

• JSON v1/v2 and Thrift over HTTP
• Kafka transport not supported yet

Clients:

• B3 propagation
• Jaeger clients in Zipkin environment

23

● Metrics
○ --metrics-backend

■ prometheus (default), expvar

○ --metrics-http-route
■ /metrics (default)

● Scraping Endpoints
○ Query service - API port 16686
○ Collector - HTTP API port 14268
○ Agent - sampler port 5778

Monitoring

24

Roadmap
Things we are working on

25

● APIs have endpoints with different QPS

● Service owners do not know the full impact of

sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

Adaptive Sampling

26

● Based on Kafka and Apache Flink

● Support aggregations and data mining

● Examples:
○ Pairwise dependency graph

○ Path-based, per endpoint dependency graph

○ Latency histograms by upstream caller

Data Pipeline

27

Service Dependency Graph

Does Dingo Depend on Dog?

29

Latency Histogram

30

Project & Community
Contributors are welcome

31

Contributing

32

Contributing

• Agree to the Certificate of Origin
• Sign all commits (git commit -s)
• Test coverage cannot go ↓ (backend - 100%)
• Plenty of work to go around

– Backend
– Client libraries
– Kubernetes templates
– Documentation

33

References

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Online Community Meetings
34

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

Q & A
Open Discussion

35

