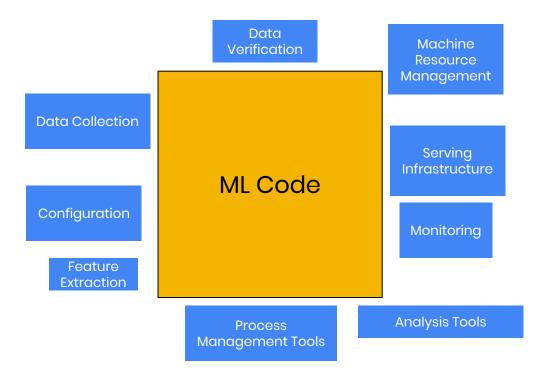

From Notebook to Kubeflow Pipelines with MiniKF & Kale

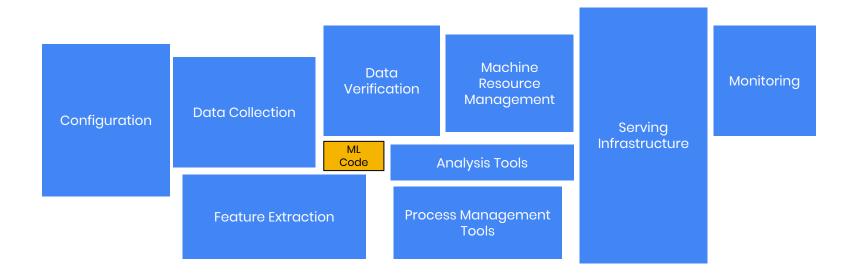
Stefano Fioravanzo, Software Engineer, Arrikto Vangelis Koukis, Founder & CTO, Arrikto

The Problem


- Setting up an ML stack/pipeline is incredibly hard
- Setting up a production ML stack/pipeline is even harder
- Setting up an ML stack/pipeline that works across the 81% of enterprises that use multi-cloud* environments is EVEN HARDER

* Note: For the purposes of this presentation, "local" is a specific type of "multi-cloud"

Source: "Building an ML stack with Kubeflow" by Abhishek Gupta, Google Al Huddle - Bay Area


Perception: ML Products are mostly about ML

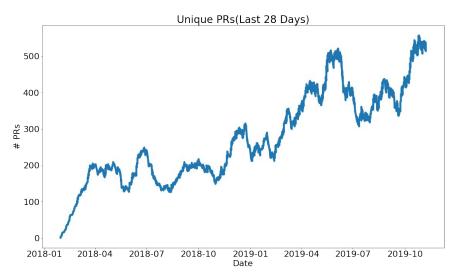
Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.

Reality: ML Requires DevOps; lots of it

Why Kubeflow

- End-to-end solution for ML on Kubernetes
- Containerized workload
- Experiment exploration with state-of-art AI technologies
- Easy on-boarding
- Outstanding community and industry support

Community!



Just a SMALL sample of community contributions

Arrikto

- Jupyter manager Ul
- Pipelines volume support
- MiniKF
- Auth with Istio + Dex
- On-premise installation

Bloomberg

KFServing

Cisco

- Auth with Istio + Dex
- Katib
- KubeBench
- PyTorch
- On-premise installation

GoJEK

Feast feature store

IBM

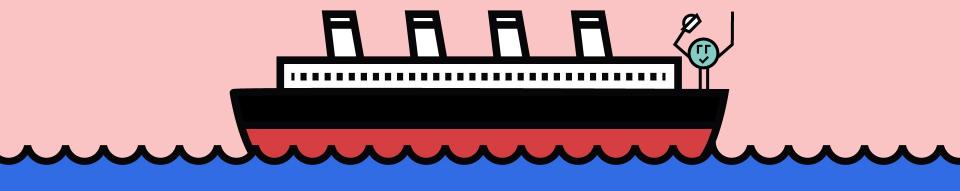
- Pipeline components for spark, ffdl
- Katib
- KFServing
- Faring
- Kubeflow SDK (TFJob, PyTorchJob, KFServing)
- Manifest

Intel

- kfctl (CLI & library) & kustomize
- OpenVino

Intuit

Argo


RedHat + NVIDIA

TensorRT for notebooks

Seldon

Seldon core

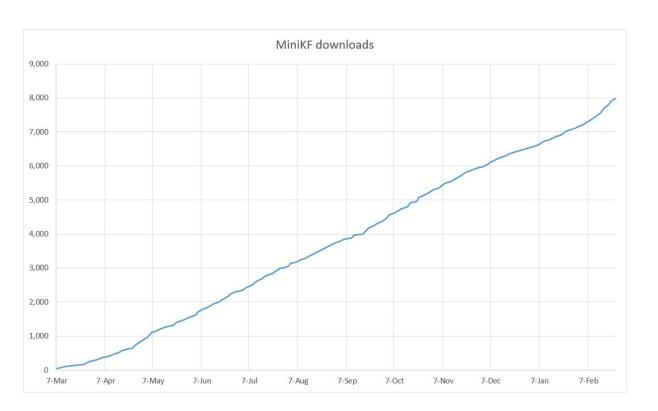
Live demo: Titanic example on MiniKF

What is MiniKF?

- Kubeflow on GCP, your laptop, or on-prem infrastructure in just a few minutes
- All-in-one, single-node, Kubeflow distribution
- Very easy to spin up on your own environment on-prem or in the cloud
- MiniKF = MiniKube + Kubeflow + Arrikto's Rok Data Management Platform

What's new in the latest MiniKF?

- Kubeflow 0.7.1
 - Stay tuned for Kubeflow 1.0
- Support for GPUs
- Faster, near-instantaneous snapshot restore with Rok
- Significantly improve time for snapshotting Notebooks (using Arrikto's Rok)
- Ability to snapshot every step of a pipeline (using Arrikto's Rok)

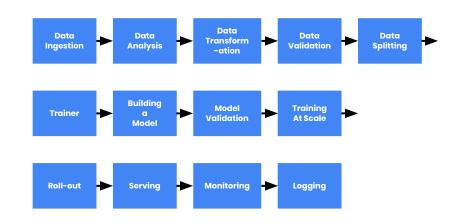

Why we started MiniKF

- Exploration and experimentation starts on the data scientist's laptop
- No easy way to deploy Kubeflow on-prem
- Make get started with Kubeflow dead simple
 - Help democratize access to ML
- Same foundation/APIs everywhere,
 - users can move to a Kubeflow cloud deployment with one click, without having to rewrite anything

Local Kubeflow: Unified UX

- **Exactly** the same environment, on-prem, or on the cloud
- A single, unified User Experience
- Same Kubernetes APIs
- Same Kubeflow components
 - Notebooks
 - Pipelines
 - Katib
 - Kale

MiniKF on laptop adoption

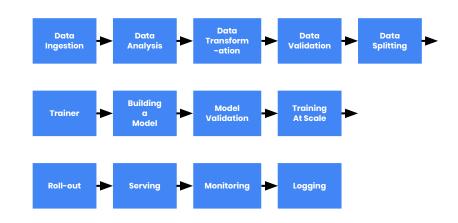


Data Science with Kubeflow

Kubeflow Pipelines exists because Data Science and ML are inherently **pipeline processes**

This webinar will focus on two essential aspects:

- Low barrier to entry: deploy a Jupyter
 Notebook to Kubeflow Pipelines in the Cloud using a fully GUI-based approach
- Reproducibility: automatic data versioning to enable reproducibility and better collaboration between data scientists

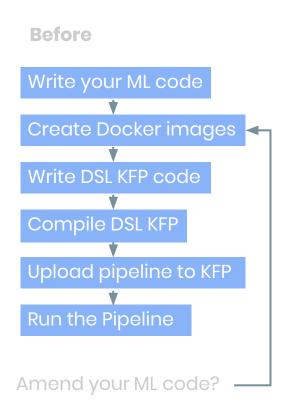

Data Science with Kubeflow

Kubeflow Pipelines exists because Data Science and ML are inherently **pipeline processes**

This webinar will focus on two essential aspects:

Low barrier to entry:
 Notebook to Kubeflov
 using a fully GUI-based approach

Reproducibility: Rok ersioning to enable reproducible Rok ersioning collaboration between data scientists


Benefits of running a Notebook as a Pipeline

- The steps of the workflow are clearly defined
- Parallelization & isolation
 - Hyperparameter tuning
- Data versioning
- Different infrastructure requirements
 - Different hardware (GPU/CPU)

Workflow

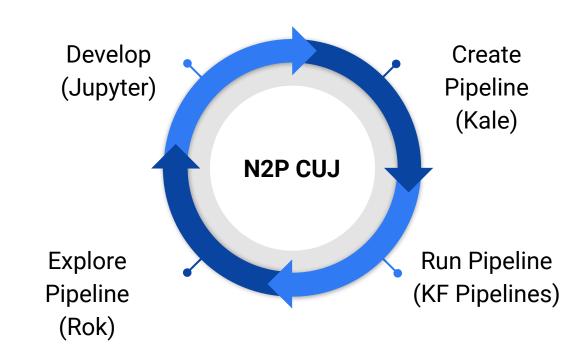
```
Before
 Write your ML code
 Create Docker images ←
 Write DSL KFP code
 Compile DSL KFP
 Upload pipeline to KFP
 Run the Pipeline
Amend your ML code?
```

Workflow

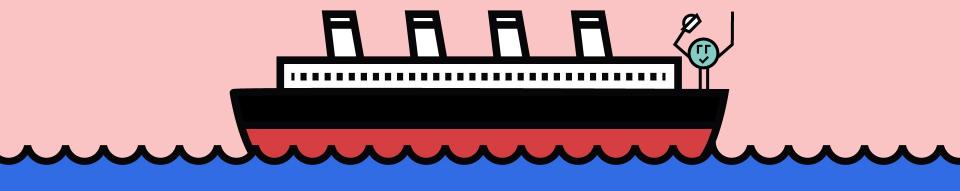
After

Write your ML code

Tag your Notebook cells

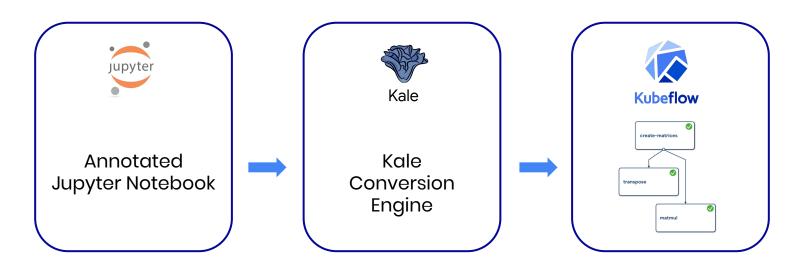

Run the Pipeline at the click of a button

Amend your ML code? → Just edit your Notebook!


CI/CD for ML

How can data scientists continually improve and validate models?

- Develop models and pipelines in Jupyter
- Convert notebook to pipeline using Kale
- Run pipeline using Kubeflow
 Pipelines
- Explore and debug pipeline using Rok

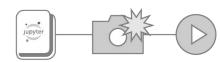


Live demo: Titanic example on MiniKF

KALE - Kubeflow Automated PipeLines Engine

- Python package + JupyterLab extension
- Convert a Jupyter Notebook to a KFP workflow
- No need for Kubeflow SDK

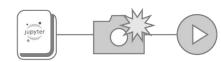
Demo steps


1. Start Notebook, install new libraries on the fly

2. Enable Kale and tag your Notebook cells

3. Snapshot your Notebook using Rok and run the pipeline

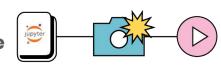
Demo steps


1. Start Notebook, install new libraries on the fly

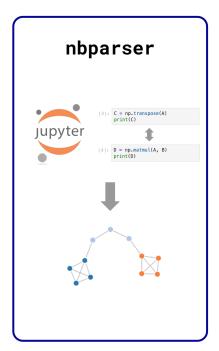
2. Enable Kale and tag your Notebook cells

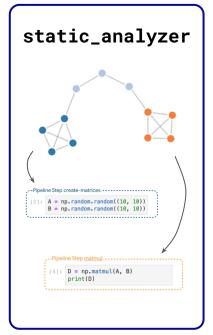
3. Snapshot your Notebook using Rok and run the pipeline

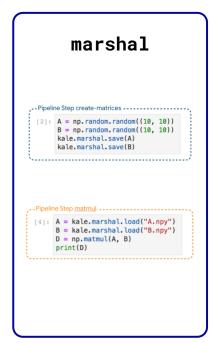
Demo steps

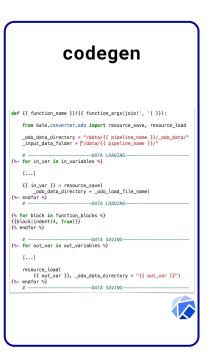

1. Install any missing libraries on the fly

2. Enable Kale and tag your Notebook cells




3. Snapshot your Notebook using Rok and run the pipeline





KALE - Modules

Derive pipeline structure

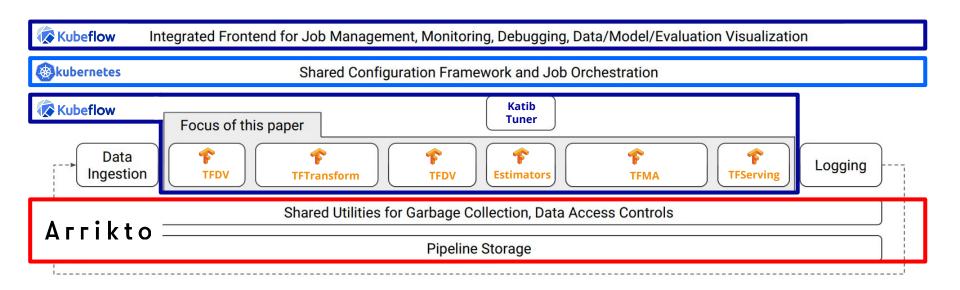
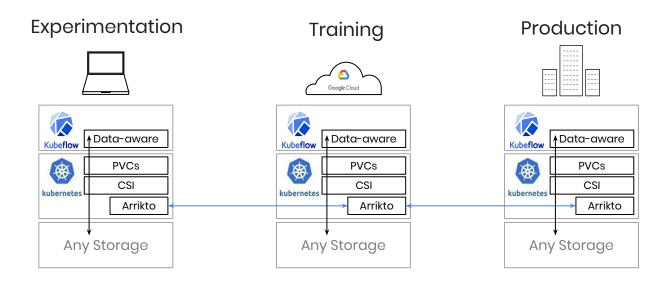
Identify dependencies

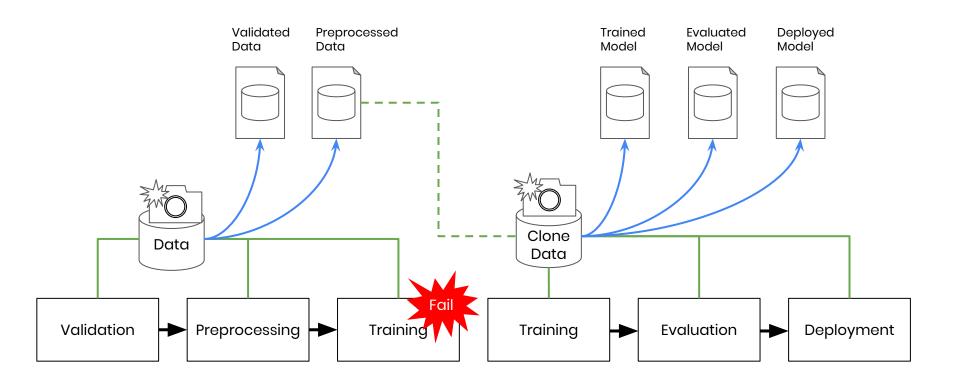
Inject data objects

Generate & deploy pipeline

Data Management in Kubeflow

- Extend Kubeflow to use Persistent Volumes in a vendor-agnostic way
- Arrikto major contributions
 - JupyterHub-based Spawner with support for Persistent Volumes (in 0.4)
 - K8s-native Jupyter Notebook Manager with support for Persistent Volumes (in 0.5)
 - Extensions to the Kubeflow Pipelines DSL for Persistent Volumes and Volume
 Snapshots (in 0.5)
 - Authentication and authorization using Istio and Dex (in 0.6)
 - K8s-native Volumes Manager with support for creating new PVCs and viewing their data (coming in 1.0)

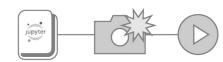

Figure 1: High-level component overview of a machine learning platform.

Data Versioning, Packaging, and Sharing

Across teams and cloud boundaries for complete Reproducibility, Provenance, and Portability

Arrikto Rok

Demo steps

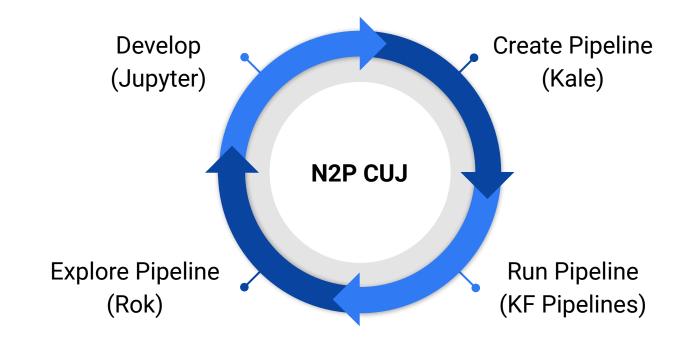

1. Install any missing libraries on the fly

2. Enable Kale and tag your Notebook cells

3. Snapshot your Notebook using Rok and run the pipeline

Running KFP: **Without** Kale and Rok

You would need strong Kubernetes knowledge to

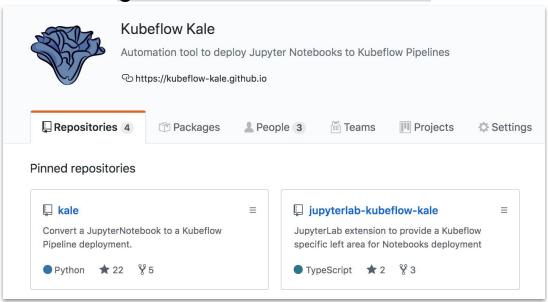

- Understand K8s and be familiar with kubectl
- Understand and compose YAML files
- Manually create PVCs via Kubernetes
- Mount a PVC to a container to fill it up with initial data
- Start a pipeline manually

Running KFP: **With** Kale and Rok

Data scientists are more self-sufficient:

- No interaction at all with K8s and YAML
- Fast data movement from Notebooks to Pipelines
- Start a pipeline with the click of a button
- Seamless mounting of PVCs & seeding with data
- Simplified end-2-end pipeline execution & reproducibility
- Per-step snapshots for notebook-based exploration / iteration / troubleshooting

Notebook-to-Pipeline CUJ

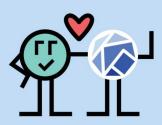

Ecosystem-supported CUJ for Kubeflow 1.0

Future improvements

- Support for multi- and hybrid-cloud Kubeflow Pipelines
 - Experiment locally, train and deploy on different clouds
- Hyperparameter Tuning with Kale and Katib
 - 1000s of automated pipeline runs! Caching!
- Data and metadata tracking with Rok and MLMD
 - Explore run history and lineage of artifacts
- MiniKF with Kubeflow 1.0
 - Manage and browse Volumes with a new Volumes Manager UI

Contribute!

github.com/kubeflow-kale


Read more about Kale on Medium

Try it out!

- Installation Instructions:
 - http://www.arrikto.com/minikf
 - https://www.kubeflow.org/docs/started/getting-started-minikf/
 - https://www.kubeflow.org/docs/started/workstation/minikf-gcp/
- Notebook-to-Pipeline Tutorial
 - Follow the <u>Codelab</u>
 - View the <u>video</u>
- We need your feedback!
 - #minikf on the <u>Kubeflow Slack</u>

Thanks!

www.arrikto.com/minikf

Stefano Fioravanzo, Software Engineer, Arrikto stefano@arrikto.com | @sfioravanzo

Vangelis Koukis, Founder & CTO, Arrikto vkoukis@arrikto.com | @vkoukis