
Multitenancy in
Kubernetes:
Better walls make better tenants

Adrian Ludwin, Senior Software Engineer
Wednesday, June 17, 2020
aludwin@google.com

Goal of this
session
Understand Google’s opinionated
best practices for enterprise
multitenancy on Kubernetes,
including when and how to apply
them.

Topics

Why use multitenancy?1

What are the principles of
multitenancy?

2

How do I implement multitenancy?3

Conclusion5

Advanced topics4

01
Why use
multitenancy?

What companies care about

Cost Velocity

Kubernetes at a glance

control
planeuser CLI/API/UI

kubelet

kubelet

kubelet

NODES

control
planetenant CLI/API/UI

kubelet

kubelet

kubelet

NODES

One tenant, one cluster

CP 1Tenant 1

kubelet

CLI/API/UI kubelet

Cluster 1

CP 2Tenant 2

kubelet

CLI/API/UI

kubelet

kubelet

Cluster 2

Multiple tenants, multiple clusters

kubelet

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

Kubesprawl: how does this scale operationally?

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Clusterkubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

kubelet

kubelet

kubeletCPTenant CLI/API/UI

Cluster

Kubesprawl: how does this scale financially?

CP

Tenant

ns3-pod1

CLI/API/UI

ns2-pod1

ns2-pod2

Cluster

Tenant

Tenant

Tenant

ns1-pod1

ns1-pod2

ns3-pod2

ns3-pod3

Namespace 1

namespace

Namespace 2

Namespace 3

Alternative: many tenants, one cluster

Namespace 3Namespace 2Namespace 1

Team A Team B Team C

Shared
Platform

Kubernetes clusters (shared)

Production readiness tooling (shared)

Multitenancy reduces overhead and cost

App X App Y App Z

Regionalization

When should you use multiple clusters?

Blast radius Scalability Cluster snowflakes

… mainly CRDs, webhooks, or
cluster-scoped operators

See also: “The myth of the monocluster”

https://www.youtube.com/watch?v=jPA6zTGg_LY

02
What are the
principles of
multitenancy?

Overview of isolation in Kubernetes

GCP Project

Kubernetes Cluster

Node

NamespacePod Container

Container

Project: top level isolation

Cluster: strongest isolation within the
same project

Namespace: allows control plane
isolation within the same cluster
(no workload isolation)

Node: good resource (not security!)
isolation

Pod: localhost “isolation”

https://www.youtube.com/watch?v=6rMGRvcjvKc

Provide isolation and
fair resource sharing between

multiple users and their workloads
within a single cluster

What does “multitenancy in Kubernetes” mean?

Best Practices

1

Understand the pros/cons of various approaches
and technologies to solve your most critical
problems.

Understand your needs. Not everyone needs
everything all at once! Think about cost, overhead,
and risk tolerance.

Deploy your solutions, and keep them up-to-date, and
iterate to achieve more benefits.3

2

03
How do I
implement
multitenancy?

Namespaces

Namespaces are the primary unit of
tenancy in Kubernetes.

By themselves, they don’t do much
except organize other objects - but
almost all policies support
namespaces by default.

Multitenancy across clusters

Dev Staging Prod

Team A

Team B

Team C

Te
am

s

Clusters

Namespaces

Workloads

Workloads

Workloads

Workloads

Workloads

Workloads

Workloads

Workloads

Workloads

Properties of namespaces

● Require cluster-level permissions to create

● Fully independent policies

● Must be labeled manually to use in policy application (e.g. in
Network Policies)

● Included in Kubernetes natively

Hierarchical
namespaces
Traditional Kubernetes namespaces
are flat, with no relation between
them. Hierarchical namespaces
express ownership, allow for admin
delegation and cascading policies.

Hierarchical Namespaces are
provided by the Hierarchical
Namespace Controller (HNC), a
project of wg-multitenancy.

org 1
org 2

team A

team B

svc 1 svc 2

team C

subteam
C2

snowflake
team

https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc

Properties of hierarchical namespaces

● Can use namespace-level “subnamespace” permission to create

● Inherit policies from ancestors

● Can be selected individually or as subtrees

● Provided via the OSS Hierarchical Namespace Controller (HNC),
or as a part of GKE’s Config Sync (available later in June 2020).

https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc
https://cloud.google.com/kubernetes-engine/docs/add-on/config-sync/overview

Applying multitenancy

Access
Control

Resource
Sharing

InsightsRuntime
Isolation

1 2 3 4

Applying multitenancy

Access
Control

Resource
Sharing

InsightsRuntime
Isolation

1 2 3 4

Access control

Tenancy is about
ownership, and ownership
is about control. Job #1 is
ensuring that tenants can’t
control each others’
resources.

Control Plane (apiserver)

Pluggable Auth
(GKE IAM)

RBAC

Cloud IAM Policies

{Cluster}Role
{Cluster}RoleBinding

Resources

Authentication and authorization

RBAC controls access to namespaces in Kubernetes. They’re used for:

● Giving humans access to Kubernetes resources
○ On GKE, can use Google Groups to give groups of people identical access

● Giving non-Kubernetes service accounts access to the Kubernetes API
○ Example: GCP Service Accounts; also work with Google Groups

● Giving access to pods calling Kubernetes APIs (with Kubernetes Service Accounts)

ClusterRole A set of cluster-wide permissions. Some useful defaults are preset (e.g. “admin”)

Role Like a ClusterRole, but limited to a single namespace

ClusterRoleBinding Give a role to one or more subjects (humans, SAs, etc) across the whole cluster.

RoleBinding Give a role within a single namespace. You can also use ClusterRoles (e.g. “admin”) to
grant predefined permissions, but limited to that one namespace

Role-Based Access Control (RBAC)

Key RBAC concepts:

GKE Workload Identity
Let Google manage and rotate the credentials that are used by your
Kubernetes workloads to access GCP services.

● Workloads attaching a Kubernetes SA automatically authenticate
as a separate GCP SA when accessing GCP API

● Allows the Oauth scopes and service accounts attached to node
pools to follow least privilege

Replaces these workarounds:

● Using node (VM) identity for the pod

● Removes the need for exporting user managed service account keys and embedding them in kubernetes
native secrets

Applying multitenancy

Access
Control

Resource
Sharing

InsightsRuntime
Isolation

1 2 3 4

Resource sharing

Many elements of the
cluster are still shared,
especially nodes and the
apiserver itself. Make sure
your tenants can share
them fairly.

Resource Sharing

● Resource Quotas: no one namespace can exceed resource usage.
Also used to control dangerous objects (ingress, external
services).

● Limit Range: no one pod can exceed resource usage

● Pod Affinity/Anti-affinity: keep pods scheduled together/apart

● Pod Priority: pick a winner when there isn’t enough to go around

Applying multitenancy

Access
Control

Resource
Sharing

Insights

1 2 3 4

Runtime
Isolation

.

Runtime isolation

Vulnerabilities and attacks
are a reality, and containers
aren’t a security boundary.
Consider adding runtime
isolation to stop anything
getting out of your
containers.

Runtime boundaries in Kubernetes

GCP Project

Cluster

Node

NamespacePod Container

Container

Pod: a unit of scheduling and
deploying workloads
(no secure isolation by default)

Runtime isolation: overview

● Pod Security Context: restrict a pod’s workload (eg non-root).

● Pod Security Policy: enforce that pods must declare an appropriate
context. Hard to enable on a working cluster; consider alternatives
like OPA Gatekeeper or Anthos Policy Controller.

● Network Policy: forbid pods from talking to each other if they have no
good reason to.

● Runtime Class: run pods in sandboxes like gVisor or Kata Containers.

https://github.com/open-policy-agent/gatekeeper
https://cloud.google.com/anthos-config-management/docs/concepts/policy-controller

GKE’s built-in Runtime Class
protects your pods.

Adds a security boundary to
containers in GKE based on
gVisor.

Defense-in-depth security
principles without application
changes, new architecture models,
or added complexity.

Runtime isolation: GKE Sandbox

Applying multitenancy

Access
Control

Resource
Sharing

InsightsRuntime
Isolation

.

1 2 3 4

Insights

Tenants need to be able to
observe themselves, and
you need to be able to
observe (and charge!) your
tenants.

● View workloads’ resource usage in BigQuery, broken down
by namespace and labels

○ Memory, CPU, GPU, PD, network, etc.

● Join usage data with GCP Billing Export data to compute
resource costs per tenant

GKE Usage Metering

GKE Usage
Metering

GKE Project

GKE multi-tenant cluster

Namespace: Tenant A

Namespace: Tenant B

Pod A Pod B

Pod A Pod B

GCP Project: Tenant A

Big Query

Tenant A

Stackdriver Logs

GCP Project: Tenant B

Big Query

Tenant B

Logs often refer to sensitive data,
so consider controlling access to
them carefully.

● Create a tenant project with a
BigQuery dataset for each
team.

● Use Log Routing to filter logs
by namespace and send them
to the correct BigQuery
dataset.

Multitenant logging

GKE Project

GKE multi-tenant cluster

Namespace: Tenant A

Namespace: Tenant B

Pod A Pod B

Pod A Pod B

GCP Project: Tenant A

Stackdriver

Tenant A

GCP Project: Tenant B

Stackdriver

Tenant B

Metrics are often less sensitive
than logs, but you can still control
access by tenant if you like.

● Create a tenant project per
team.

● As part of the onboarding
process, create a Prometheus /
Stackdriver adapter with a per
namespace config

● Send each tenant’s metrics to
the correct project.

Multitenant monitoring

Namespace: Monitoring

Prometheus
Monitoring

04
Advanced
topics

Be careful about storing your source-of-truth on your cluster.

● Check your policies (e.g. RBAC, Network Policy) into Git as
YAML files.

● Have your cluster admin apply them based on Git, or use a CD
tool like GKE Config Sync or Anthos Config Management.

● Test out changes on a canary cluster first, even in prod!
● Separate your policies from your workloads.

○ Possible exception: DaemonSets

Policy deployment

https://cloud.google.com/kubernetes-engine/docs/add-on/config-sync/overview
https://cloud.google.com/anthos/config-management

Use OPA Gatekeeper (or Anthos Policy Controller) to define and
apply custom policies.

● Define rules in Rego (Python-like rule language)
● Apply them across your clusters
● Audit violations
● Useful alternative to Pod Security Policies

Policy enforcement and auditing

https://github.com/open-policy-agent/gatekeeper
https://cloud.google.com/anthos-config-management/docs/concepts/policy-controller

Hard multitenancy is loosely defined as the condition where
tenants are mutually hostile, not relatively co-operative.

● Virtual Clusters: an wg-multitenancy project to give each
tenant its own control plane while sharing a data plane. Must
be combined with sandboxing.

● SaaS multitenancy: many different instances of the same
application for different consumers. Generally requires
sandboxing and control plane automation.

Your needs will be very specific to your threat model!

Further exploration

https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/virtualcluster

05
Conclusion

Best Practices

1

Understand the pros/cons of various approaches
and technologies to solve your most critical
problems.

Understand your needs. Not everyone needs
everything all at once! Think about cost, overhead,
and risk tolerance.

Deploy your solutions, and keep them up-to-date, and
iterate to achieve more benefits.3

2

Learning more...

Available from the GCP docs website

https://cloud.google.com/kubernetes-engine/docs/best-practices/enterprise-multitenancy

Learning more...

Kubecon San Diego had some great presentations on building multitenancy systems
on Kubernetes. My favourites include:

● Walls within walls: what if your attacker knows parkour?
● Kubernetes at Cruise: two years of multitenancy
● Plus two sessions from the multitenancy working group (wg-multitenancy)

Some other interesting links to follow include:
● The Multitenancy Working Group
● Mercari’s experience with multitenant Istio

https://www.youtube.com/watch?v=6rMGRvcjvKc
https://www.youtube.com/watch?v=m19D9vZ1QFQ
https://www.youtube.com/watch?v=WN8mmHU2HOU
https://www.youtube.com/watch?v=PA101KUDusY
https://github.com/kubernetes-sigs/multi-tenancy/
https://medium.com/mercari-engineering/adopting-istio-for-a-multi-tenant-kubernetes-cluster-in-production-df1a8260ca24

Namespace 3Namespace 2Namespace 1

Team A Team B Team C

Shared
Platform

Kubernetes clusters (shared)

Production readiness tooling (shared)

Multitenancy reduces overhead and cost

App X App Y App Z

