
What’s New in Kubernetes 1.13



© 2018 Cloud Native Computing Foundation2

Kendrick Coleman 
1.13 Enhancements Lead

Presenters

Saad Ali
SIG-Storage

Kaitlyn Barnard
1.13 Communications

Tim St. Clair
SIG-Cluster Lifecycle



© 2018 Cloud Native Computing Foundation3

Agenda

1.13 Enhancements Overview
Storage updates
Kubeadm
Q&A

 



1.13 Enhancements



© 2018 Cloud Native Computing Foundation5

Major Themes

• Focus on stability
– Shortened release cycle from 12-13 weeks to 10

• KubeCons and US Holidays
– Remove lofty goals 
– Slipped features from 1.12 into 1.13
– Required extensive communication by leads to counterpart SIGs

• De-vendoring and Extensibility
– More on removing vendor code
– Added more interfaces



© 2018 Cloud Native Computing Foundation6

Overview



Highlights



© 2018 Cloud Native Computing Foundation8

Kubeadm

Kubeadm is a tool built to provide kubeadm init and kubeadm join as 
best-practice “fast paths” for creating Kubernetes clusters.
kubeadm performs the actions necessary to get a minimum viable 
cluster up and running. By design, it cares only about bootstrapping, not 
about provisioning machines. Kubeadm also supports other cluster 
lifecycle functions, such as upgrades, downgrade, and managing 
bootstrap tokens. Likewise, installing various nice-to-have addons, like the 
Kubernetes Dashboard, monitoring solutions, and cloud-specific addons, 
is not in scope.
Instead, we expect higher-level and more tailored tooling to be built on 
top of kubeadm, and ideally, using kubeadm as the basis of all 
deployments will make it easier to create conformant clusters.

https://github.com/kubernetes/enhancements/issues/11

Graduated to Stable / SIG Cluster Lifecycle



© 2018 Cloud Native Computing Foundation9

Switch default DNS plugin to CoreDNS

CoreDNS is another CNCF project 
• 3000+ GitHub Stars
• 114+ contributors

A single executable and single process.
Written in Go
Supports more use cases 

https://github.com/kubernetes/enhancements/issues/566

Graduated to Stable / SIG Network



© 2018 Cloud Native Computing Foundation10

Kubelet Device Plugin Registration

A common Kubelet plugin discovery model that can be used by different types of node-level plugins, such as 
device plugins, CSI, and CNI, to establish communication channels with Kubelet.

• Currently, a plugin registers with Kubelet through grpc
• New implementation is a Kubelet watches new plugins under a canonical path through inotify.

– Kubelet will have a new module, PluginWatcher, which will probe a canonical path recursively
– On detecting a socket creation, Watcher will try to get plugin identity details using a gRPC client on the 

discovered socket and the RPCs of a newly introduced Identity service
– Plugins must implement Identity service RPCs for initial communication with Watcher. 

https://github.com/kubernetes/enhancements/issues/595

Graduated to Stable / SIG Node



© 2018 Cloud Native Computing Foundation11

Out-of-tree CSI Volume Plugins

Allows out-of-tree plugins to be created for volume purposes. Kubernetes volume plugins are 
currently all "in-tree" meaning that their source code is included in the main Kubernetes repo. All 
volume plugins are compiled and ship along with kubernetes binaries. This allows plug-ins to:
• be developed out-of-tree.
• Not require building volume plugins (or their dependencies) into Kubernetes binaries
• Not requiring direct machine access to deploy new volume plugins (drivers)

https://github.com/kubernetes/enhancements/issues/178

Graduated to Stable / SIG Storage



© 2018 Cloud Native Computing Foundation12

Windows Container Support

Where’s Windows??
SIG Architecture and SIG Windows met to discuss the 
current status and determined it was not ready to 
graduate to GA/Stable
SIG Architecture has requested a formal KEP to be filed. 
This is to make sure there is an expectation of what will 
and won’t be supported. This is also to make sure there is 
community consensus moving forward.

https://github.com/kubernetes/enhancements/issues/116

Didn’t Happen



API-Machinery



© 2018 Cloud Native Computing Foundation14

APIserver "dry-run"

Dry-run is a new feature implemented in the api-server
The goal is to send requests to modifying endpoints, and see if the request would have 
succeeded and/or what would have happened without having it actually happen. The 
response body for the request should be as close as possible to a non dry-run response. 
Dry-run is triggered by setting the “dryRun” query parameter on modifying verbs: POST, PUT, 
PATCH and DELETE.

https://github.com/kubernetes/enhancements/issues/576

Graduated to Beta



© 2018 Cloud Native Computing Foundation15

Webhook Conversion for Custom Resource Definitions

CRD supports multiple version but no conversion between them (something called 
nopConverter which only change the apiVersion of the CR). With this proposal, it introduced 
a conversion mechanism for CRDs based on an external webhook. Detail API changes, use 
cases and upgrade/downgrade scenarios are discussed.

https://github.com/kubernetes/enhancements/issues/598

Alpha



© 2018 Cloud Native Computing Foundation16

Drop support for etcd2

Deprecation announced in 1.10
Support for etcd3 was added in 1.5 and made stable in 1.6

https://github.com/kubernetes/enhancements/issues/622

Stable



Auth



© 2018 Cloud Native Computing Foundation18

Dynamic Audit Configuration

Kubernetes provides auditing via the API server to generate a record of chronological events 
to document activated performed. It answers the following questions: 
• what happened?
• when did it happen?
• who initiated it?
• on what did it happen?
• where was it observed?
• from where was it initiated?
• to where was it going?

Dynamic Audit Control provide a means of configuring the advanced auditing features post 
cluster provisioning.

https://github.com/kubernetes/enhancements/issues/600

Alpha



CLI



© 2018 Cloud Native Computing Foundation20

Kubectl diff

Users can run a kubectl command to view the difference between a locally declared object 
configuration and the current state of a live object
Kubectl would support a diff command referencing the object configuration (OC) sources 
referenced above (LOCAL, LIVE, LAST, MERGED) using a similar convention to how git-diff 
references the tip of a branch as HEAD.

Implementation
• kubectl diff -f something.yaml -f somethingelse.yaml LOCAL MERGED

https://github.com/kubernetes/enhancements/issues/491

Beta



© 2018 Cloud Native Computing Foundation21

Plugin mechanism for kubectl

Provide users with a way to extend the functionality of kubectl, beyond what is offered by its 
core commands 
Avoid any kind of installation process (no additional config, users drop an executable in their 
PATH, for example, and they are then able to use that plugin with kubectl). No additional 
configuration is needed, only the plugin executable. A plugin's filename determines the 
plugin's intention, such as which path in the command tree it applies to: 
/usr/bin/kubectl-educate-dolphins would, for example be invoked under the 
command kubectl educate dolphins --flag1 --flag2. It is up to a plugin to parse any 
arguments and flags given to it. A plugin decides when an argument is a subcommand, as 
well as any limitations or constraints that its flags should have.

https://github.com/kubernetes/enhancements/issues/579

Beta



Node



© 2018 Cloud Native Computing Foundation23

Support 3rd party device monitoring plugins

Device Monitoring requires external agents to be able to determine the set of devices in-use 
by containers and attach pod and container metadata for these devicesDynamic Audit 
Control provide a means of configuring the advanced auditing features post cluster 
provisioning.

https://github.com/kubernetes/enhancements/issues/606

Alpha



© 2018 Cloud Native Computing Foundation24

Move frequent Kubelet heartbeats to Lease API

Kubelet creates and periodically renews a Lease on the node; node lifecycle controller treats 
this lease as a health signal.

Introducing a new Lease built-in API in the newly created API group coordination.k8s.io. To 
make it easily reusable for other purposes it will be namespaced.

https://github.com/kubernetes/enhancements/issues/606

Alpha



Scheduling



© 2018 Cloud Native Computing Foundation26

Taint Based Eviction

This is an addon to tainting nodes which is similar to anti-affinity in VM-speak.

TaintBasedEvictions feature is promoted to beta and enabled by default, hence the taints are automatically 
added by the NodeController (or kubelet) and the normal logic for evicting pods from nodes based on the 
Ready NodeCondition is disabled.

• node.kubernetes.io/not-ready: Node is not ready. This corresponds to the NodeCondition Ready 
being "False".

• node.kubernetes.io/unreachable: Node is unreachable from the node controller. This corresponds 
to the NodeCondition Ready being "Unknown".

• node.kubernetes.io/out-of-disk: Node becomes out of disk.
• node.kubernetes.io/memory-pressure: Node has memory pressure.
• node.kubernetes.io/disk-pressure: Node has disk pressure.
• node.kubernetes.io/network-unavailable: Node's network is unavailable.
• node.kubernetes.io/unschedulable: Node is unschedulable.
• node.cloudprovider.kubernetes.io/uninitialized: When the kubelet is started with "external" 

cloud provider, this taint is set on a node to mark it as unusable. After a controller from the 
cloud-controller-manager initializes this node, the kubelet removes this taint.

https://github.com/kubernetes/enhancements/issues/166

Graduated to Beta



© 2018 Cloud Native Computing Foundation27

Scheduler checks feasibility and scores a subset of 
all cluster nodes

Today, kube-scheduler checks feasibility of all of the nodes in a cluster for every pod in every 
scheduling attempt. All of those feasible pods are then scored. Performance data shows that 
90th percentile of running predicate and priority functions takes about 30ms per pod and 
99th percentile is as high as 60ms/pod.
This feature in the scheduler finds a certain number of feasible nodes in a cluster, and passes 
those nodes for scoring. This will improve the scheduler's performance.
Today, kube-scheduler checks all the feasible nodes and picks the highest score in the whole 
cluster. With this feature, the chosen node may not be the best node in the whole cluster. The 
chosen node will be the highest score among those nodes found feasible.

https://github.com/kubernetes/enhancements/issues/593

Beta



Storage



© 2018 Cloud Native Computing Foundation29

Topology Aware Volume Scheduling

Makes the scheduler aware of a Pod's volume's topology constraints, such as zone or node 
making the PersistentVolumeClaim (PVC) binding aware of scheduling decisions.
• Allow a Pod to request one or more topology-constrained Persistent Volumes (PV) that 

are compatible with the Pod's other scheduling constraints, such as resource 
requirements and affinity/anti-affinity policies.

• Support arbitrary PV topology constraints (i.e. node, rack, zone, foo, bar).
• Support topology constraints for statically created PVs and dynamically provisioned PVs.
• No scheduling latency performance regression for Pods that do not use 

topology-constrained PVs.

https://github.com/kubernetes/enhancements/issues/490

Graduated to Stable



© 2018 Cloud Native Computing Foundation30

Raw block device using persistent volume source

By extending the API for volumes to specifically request a raw block device, we provide an 
explicit method for volume consumption, whereas previously any request for storage was 
always fulfilled with a formatted file system, even when the underlying storage was block. In 
addition, the ability to use a raw block device without a filesystem will allow Kubernetes better 
support of high performance applications that can utilize raw block devices directly for their 
storage. Block volumes are critical to applications like databases (MongoDB, Cassandra) that 
require consistent I/O performance and low latency. For mission critical applications, like SAP, 
block storage is a requirement.

https://github.com/kubernetes/enhancements/issues/351

Beta



© 2018 Cloud Native Computing Foundation31

Add resize support for FlexVolume

Add resize call support for FlexVolume to support volume resizing like LVM expansion 
When user uses FlexVolume and corresponding volume driver to connect to the backend 
storage system, they can expand the PV size by updating PVC in Kubernetes.

https://github.com/kubernetes/enhancements/issues/304

Alpha



Kubeadm - GA



© 2018 Cloud Native Computing Foundation33

Command Line UX

• Stable command-line UX — The kubeadm CLI conforms to #5a GA rule of the 
Kubernetes Deprecation Policy, which states that a command or flag that exists in a GA 
version must be kept for at least 12 months after deprecation.
– init/join/upgrade/config/reset/token/version

• Upgrades between minor versions — The kubeadm upgrade command is now fully GA. 
It handles control plane upgrades for you, which includes upgrades to etcd, the API 
Server, the Controller Manager, and the Scheduler. You can seamlessly upgrade your 
cluster between minor or patch versions (e.g. v1.12.2 -> v1.13.1 or v1.13.1 -> v1.13.3).

Graduated to Stable

https://kubernetes.io/docs/reference/using-api/deprecation-policy/#deprecating-a-flag-or-cli
https://kubernetes.io/docs/reference/using-api/deprecation-policy/#deprecating-a-flag-or-cli
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-upgrade/
https://etcd.io/
https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/


© 2018 Cloud Native Computing Foundation34

Command Line UX - Cont.

● The “toolbox” interface of kubeadm — Also known as phases. If you don’t want to 
perform all kubeadm init tasks, you can instead apply more fine-grained actions using 
the kubeadm init phase command (for example generating certificates or control plane 
Static Pod manifests).
○ Currently this only applies to `kubeadm init`
○ In 2019 - `kubeadm join phases`

● etcd setup — etcd is now set up in a way that is secure by default, with TLS 
communication everywhere, and allows for expanding to a highly available cluster 
when needed.

● HA Ready - (feature still currently experimental)

Graduated to Stable

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-init/
https://kubernetes.io/docs/tasks/administer-cluster/static-pod/
https://etcd.io/


© 2018 Cloud Native Computing Foundation35

Configuration File Schema

● Configuration file schema — With the new v1beta1 API version, you can now tune 
almost every part of the cluster declaratively and thus build a “GitOps” flow around 
kubeadm-built clusters. In future versions, we plan to graduate the API to version v1 with 
minimal changes.
○ Examples and references are now in standard Godoc format
○ Config is split into parts

■ InitConfiguration 
■ ClusterConfiguration - stored on cluster in a configmap
■ JoinConfiguration 

Beta

https://godoc.org/k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta1


Questions?



Thank You


