
What’s New in Kubernetes 1.12



Cloud Native Computing Foundation2

Stephen Augustus
Product Management Chair

Presenters

Pengfei Ni
SIG-Azure

Juan Vallejo
SIG-CLI

Kaitlyn Barnard
1.12 Communications 

Lead



Cloud Native Computing Foundation3

Agenda

1.12 Features Overview
Azure VMSS
Kubectl Plugins 
Q&A

 



Overview of 1.12 Features
Stephen Augustus
Kubernetes Product Management Chair



Cloud Native Computing Foundation5

TLS (Transport Layer Security)

TLS Bootstrapping moves to GA!

TLS Server Certificate Rotation is now beta.



Cloud Native Computing Foundation6

Scheduling

Quota by priority - beta

Taint nodes by priority - beta



Cloud Native Computing Foundation7

API Machinery

Resource Quota API - beta (defaulting quotas for high-cost resources)

API Server Dry-run - alpha



Cloud Native Computing Foundation8

Network

NetworkPolicy

● Egress - GA
● ipBlock - GA



Cloud Native Computing Foundation9

Node

RuntimeClass - alpha (cluster-scoped runtime properties)

Pod Process Namespace sharing - beta

Kubelet Device Plugin registration - beta



Cloud Native Computing Foundation10

Storage

Topology-aware dynamic provisioning - beta

Dynamic maximum volume count - beta

Snapshot / restore via CRD (Custom Resource Definition) - alpha



Cloud Native Computing Foundation11

Autoscaling

HPA (Horizontal Pod Autoscaler)

● Scaling via custom metrics (metrics-server) - beta
● Improving scaling algorithm to reach size faster - beta

VPA (Vertical Pod Autoscaler) - beta



Azure Virtual Machine Scale Sets 
(VMSS) and Cluster-Autoscaler
Pengfei Ni, Microsoft Azure



Cloud Native Computing Foundation13

Azure Virtual Machine Scale Set (VMSS)

● Easy to create and manage identical VMs
● Provides high availability and application resiliency
● Allows your application to automatically scale as resource demand 

changes
● Provides large-scale VM instances (1000)



Cloud Native Computing Foundation14

VMSS vs VM
Scenario Manual group of VMs (VMAS) Virtual machine scale set

Add additional 
VM instances

Manual process to create, 
configure, and ensure compliance

Automatically create from central 
configuration

Traffic balancing 
and distribution

Manual process to create and 
configure Azure load balancer or 
Application Gateway

Can automatically create and 
integrate with Azure load balancer or 
Application Gateway

High availability 
and redundancy

Manually create Availability Set or 
distribute and track VMs across 
Availability Zones

Automatic distribution of VM 
instances across Availability Zones or 
Availability Sets

Scaling of VMs Manual monitoring and Azure 
Automation

Autoscale based on host metrics, 
in-guest metrics, Application Insights, 
or schedule



Cloud Native Computing Foundation15

Current Status

• Currently the following is supported:
– VMSS master nodes and worker nodes
– VMSS on worker nodes and Availability set on master nodes combination.
– Per vm disk attach
– Per VM instance public IP
– Azure Disk & Azure File support
– Availability zones (Alpha)

• In future there will be support for the following:
– AKS with VMSS support



Cloud Native Computing Foundation16

Cluster Autoscaler on Azure

• Automatically adjusts the size of the Kubernetes cluster 
• Four VM types are supported on Azure

– Azure Kubernetes Service (AKS)
– Virtual Machine Scale Set (VMSS)
– Standard Virtual Machine (VMAS)
– Azure Container Service (ACS) 

• In the future, Cluster Autoscaler will be integrated within AKS product, so 
that users can enable it by one-click.



Kubectl Plugins
Juan Vallejo, Red Hat



Cloud Native Computing Foundation18

Kubectl Plugins

- Plugins allow users to extend the core functionality of kubectl
- Enabled users to customize existing behavior to suit unique edge cases
- Allow the community to maintain and evolve extended functionality at 

its own pace
- Reworked in the 1.12 release with ease-of-use and future improvement 

in mind



Cloud Native Computing Foundation19

Kubectl Plugins

- Plugins were re-designed with three main criteria in mind:
1. Plugins should be easy to write
2. Plugins should be easy to install
3. Plugins should be extendable



Cloud Native Computing Foundation20

Kubectl Plugins

1. Plugins should be easy to write:
- Can be written in any language
- No framework or libraries required
- All flags and arguments, specified by a user, are passed as-is to a 

plugin process
- Plugins choose how to handle user input and parameters

- We have made kubernetes/cli-runtime available in order to assist 
with plugin development

- Same set of helpers, printers, and configuration-handling utilities in use 
by kubectl

- Plugin template in Go available at kubernetes/sample-cli-plugin



Cloud Native Computing Foundation21

Kubectl Plugins

2. Plugins should be easy to install
a. No plugin-specific PATH env var or fixed location

i. Plugins live anywhere on a user's PATH
b. No configuration or pre-loading of plugin commands 

i. Plugins determine which command-path they implement based on their filename
c. No external tool or program required in order to use a plugin with kubectl



Cloud Native Computing Foundation22

Kubectl Plugins

3. Plugins should be extendable
a. Easy to build additional functionality on top of the new plugin mechanism

i. Plugin mechanism provides basic functionality in order to install + use plugins, as 
minimally as possible

ii. Plugins themselves should be used to further extend the usability and functionality 
of plugin mechanism

1. KREW: Plugin lifecycle and package manager, built on top of the plugin mechanism
b. Plugins are able to "extend" other plugins

i. Plugins can leverage naming scheme to "add" themselves as subcommands to 
other plugins (e.g. kubectl-existing_plugin-foo -> kubectl existing-plugin foo)



Cloud Native Computing Foundation23

Naming a Plugin

- A plugin is an executable file, whose filename has the kubectl- prefix, 
and lives anywhere on a user's PATH

- Filename begins with: kubectl-
- /usr/local/bin/kubectl-whoami provides the command kubectl whoami
- Commands with dashes ("-") use an underscore ("_") in their plugin filename:

- /usr/bin/kubectl-get_pods provides the command kubectl get-pods
- Underscores act as both "-" and "_" when invoked: kubectl get_pods also works



Cloud Native Computing Foundation24

Discovering Plugins

- $ kubectl plugin list
- Discover all plugins available to kubectl
- Plugins are listed and executed in the same order found in a user's PATH
- Obtain warnings and errors preventing a plugin from being executed

- Plugin /a/b/kubectl-foo overshadows /c/d/kubectl-foo
- Plugin follows naming scheme, but is not executable
- Plugin attempts to overwrite a core kubectl command

- Plugin executable preference:
- $ ls /usr/local/bin

- kubectl-foo-bar
- kubectl-foo-bar-baz

- $ kubectl foo bar baz
- Longest available filename is always preferred (kubectl-foo-bar-baz)



Cloud Native Computing Foundation25

Plugin Limitations

- Although plugins can "extend" other plugins, currently not possible to 
"extend" core kubectl commands (e.g. kubectl-version-foo)

- No additional information passed from kubectl process to plugin process
- No plugin-specific environment variables (such as 

KUBECTL_PLUGIN_CURRENT_NAMESPACE)
- Want to reduce complexity from plugins implementation
- Avoid constant kubectl patches in order to offer more information to plugins to 

cover edge cases
- Plugins must parse and validate all flags and arguments passed to them

- Although kubectl will not do this for you (see explanation above), we do provide 
kubernetes/cli-runtime to do this for plugins written in Go.

- Pre-1.12 plugins must be migrated in order to work with newer versions



Cloud Native Computing Foundation26

Future of Plugins

- Although plugins cannot currently extend core kubectl commands:
- Discussion underway to potentially add limited support in the future

- Do users want this ability?
- Which command paths should be "extendable"?
- Should plugins be allowed to completely override kubectl commands, or just add 

sub-commands?
- Your feedback is welcome!



Questions?



Thank You


