
Apache Flink on Kubernetes Operator
https://github.com/GoogleCloudPlatform/flink-on-k8s-operator/

Aniket Mokashi - Tech Lead Manager
Dagang Wei - Software Engineer
Cloud Dataproc, Google
February 2020

CNCF Webinar

https://github.com/GoogleCloudPlatform/flink-on-k8s-operator/

Outline

● Why we need the Flink Operator
● Architecture and features
● Beam on Flink Operator

Kubernetes

● Kubernetes
○ a general-purpose cluster manager for all

sorts of containerized microservice
applications.

○ makes it easy to develop distributed systems
through its constructs such as Pod, Service,
PersistentVolume, Deployment...

Kubernetes API

...

The trend of running OSS on Kubernetes

History

Jan ‘19 - Kubernetes
Operator for Apache
Spark Open Sourced

Sept ‘19 - Kubernetes
Operator for Apache Flink
Open Sourced

Building control planes for Kubernetes applications

● There is a need for control planes when running
complex application on top of Kubernetes.
○ Provide higher-level APIs
○ Manage application state
○ Manage the lifecycle of Kubernetes resources

● Problem: no standard
○ Developers solve same problems in different

ways: programming languages, databases, APIs,
CLIs, monitoring, logging, etc.

○ Users get different experiences

Control API

Control Plane

Kubernetes API

Scripts as control planes

● Simple, but insufficient for complex
applications.Run

Scripts

Kubernetes API

Managed services: control planes in the cloud

● Cloud providers traditionally help users run
OSS with managed services.
○ Example: Google Cloud Dataproc
○ Runs on the internal infrastructure of the cloud

provider
○ Controller provides a service API, implements the

control logic
○ Database stores resource metadata (spec / status)
○ Agent runs in Kubernetes, polls requests from

controller, translates them to Kubernetes API calls,
and reports status back

Service API

Controller

Database

Managed service

Agent

Control API:
Poll requests
report status

API server
Kubernetes API

Kubernetes

Two Alternatives

Is there a third alternative?

Scripts Managed services ???

Open source No No

Features Poor Rich

Dev cost Low High

Support Self Cloud provider

Price Free Not free

Portable Yes No

Kubernetes Operators: extending the Kubernetes control plane

● Kubernetes Operator
○ Extends the Kubernetes control plane with

Custom Resource Definitions and Custom
Resource Controllers

○ Reuses the Kubernetes infrastructure
(resource model, API, reconciliation loop)

● Benefits
○ Developers: easy to develop
○ Users: work with higher-level of abstraction

(e.g., FlinkCluster) while preserving the native
Kubernetes experience (e.g., kubectl,
monitoring)

Kubernetes API

Kubernetes

Controller

CR CRD

Master

Node

Kubernetes Operators: a good trade-off

Scripts Managed services Operators

Open source No No Yes

Features Poor Rich Rich

Dev cost Low High Medium

Support Self Cloud provider Community

Price Free Not free Free

Portable Yes No Yes

Outline

● Why Flink Operator?
● Architecture and features
● Beam on Flink Operator

Apache Spark, Flink and Beam

a unified programming model for batch and
streaming processing, which supports various
programming languages and runs on any
execution engine.

a distributed stateful computing engine over
unbounded and bounded data streams.

a general-purpose distributed computing
engine (mainly) for batch data processing.

Flink Operator: managing Flink applications and more

● Goals
○ Managing the lifecycle of Flink applications
○ Running Beam Python jobs
○ Integrating with major cloud services

Quickstart: installation

Kubernetes

Flink
Controller

Node

Master

FlinkCluster
CRD

YAML kubectl apply -f flink-operator-v1beta1.yaml

Components

● CRD: defines the FlinkCluster custom resource
● Controller: watches the CR events, runs the

reconciliation loop to continuously drive the observed
state to the desired state.

Quickstart: running a Flink job

kubectl apply -f <my-flinkjobcluster.yaml>apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: my-flinkjobcluster
spec:
 image:
 name: flink:1.8.2
 jobManager:
 resources:
 limits:
 memory: "1024Mi"
 cpu: "200m"
 taskManager:
 replicas: 2
 resources:
 limits:
 memory: "1024Mi"
 cpu: "200m"
 job:
 jarFile: ./examples/streaming/WordCount.jar
 className:
org.apache.flink.streaming.examples.wordcount.WordCount
 args: ["--input", "./README.txt"]
 parallelism: 2
 flinkProperties:
 taskmanager.numberOfTaskSlots: "1"

Spec

● Resource: number of replicas, memory and CPU
● Software: Flink image, JAR file, class name, arguments
● Config: Flink properties

Quickstart: checking job status and events

Name: my-flinkjobcluster
Metadata:
 ...
Spec:
 ...
Status:
 Components:
 Config Map:
 Name: flinkjobcluster-sample-configmap
 State: Deleted
 Job:
 Id: 9076d259c3bb9002b52b3b4a9a4d5790
 Name: flinkjobcluster-sample-job
 State: Succeeded
 Job Manager Deployment:
 Name: flinkjobcluster-sample-jobmanager
 State: Deleted
 Job Manager Service:
 Name: flinkjobcluster-sample-jobmanager
 State: Deleted
 Task Manager Deployment:
 Name: flinkjobcluster-sample-taskmanager
 State: Deleted
 Last Update Time: 2020-02-10T23:20:33Z
 State: Stopped
Events:
 ...

kubectl describe flinkclusters <name>

Flink Operator Architecture (1/3)

0. The Flink Operator (including CRD and Controller) has been
deployed in the cluster.

1. The user runs `kubectl apply -f myjobcluster.yaml̀
which sends a FlinkCluster spec to the API server.

2. API server validates the spec against on the CRD, then
creates a FlinkCluster CR and stores it in etcd.

3. A FlinkCluster ADDED event is triggered by Kubernetes
and dispatched to the Flink Controller.

Kubernetes

CRUD FlinkCluster

Flink
Controller

Node

Master

MyJobCluster
FlinkCluster

CRD

Kubernetes API

ADDED event

Flink Operator Architecture (2/3)

4. The Flink Controller analyzes the FlinkCluster CR, then
calls the API server to create the underlying primitive
resources (JobManager service, JobManager deployment,
TaskManager deployment).

5. The controller implements the reconciliation loop: watches
the status changes of the primitive resources, updates the
status field of the CR accordingly, continuously take actions to
drive the observed state to the desired state when needed.

Kubernetes

CRUD FlinkCluster

Flink
Controller

TaskManager
Deployment

JobManager
Deployment

JobManager
Service

Node

Master

MyJobCluster
FlinkCluster

CRD

Kubernetes API

ADDED event

Flink Operator Architecture (3/3)

6. When JobManager deployment, JobManager service,
TaskManager deployment are all ready, the controller creates a
Flink job submitter which submits the job to Flink REST API
through the JobManager service.

7. The JobSubmitter keeps polling the job status from the Flink
REST API, finishes itself when the job is completed or failed.

8. After the job is done, the controller deletes all the resources
(JM, TM) for the job, but the job cluster metadata is kept.

Kubernetes

CRUD FlinkCluster

Flink
Controller

TaskManager
Deployment

JobManager
Deployment

JobManager
Service

Node

JobSubmitter

Master

MyJobCluster
FlinkCluster

CRD

Kubernetes API

ADDED event

Feature: session cluster and job cluster

● Job spec is optional
○ Session cluster: only cluster spec, no job spec
○ Job cluster: cluster spec + job spec

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: flinkjobcluster-sample
spec:
 image:
 name: flink:1.8.2
 jobManager:
 ports:
 ui: 8081
 resources:
 limits:
 memory: "1024Mi"
 cpu: "200m"
 taskManager:
 replicas: 2
 resources:
 limits:
 memory: "1024Mi"
 cpu: "200m"
 job:
 jarFile: ./examples/streaming/WordCount.jar
 className:
org.apache.flink.streaming.examples.wordcount.WordCount
 args: ["--input", "./README.txt"]
 parallelism: 2

● Flink job JAR could be downloaded from a
remote storage with an init container. This
allows reusing the Flink image, no need to
rebuild just to include the job JAR.

Feature: init containers and remote job JAR

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: flinkjobcluster-gcs
spec:
 image:
 name: flink:1.8.2
 jobManager:
 ...
 taskManager:
 ...
 job:
 jarFile: /cache/wordcount.jar
 volumes:
 - name: cache-volume
 emptyDir: {}
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 initContainers:
 - name: gcs-downloader
 image: google/cloud-sdk
 command: ["gsutil"]
 args:
 - "cp"
 - "gs://my-bucket/wordcount.jar"
 - "/cache/wordcount.jar"
...

● If you specify autoSavepointSeconds and
savepointsDir, the operator could take
savepoints automatically for you.

● The locations of the saved savepoints are
recorded in the status field.

Feature: taking savepoints automatically

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: flinkjobcluster-sample
spec:
 image:
 name: flink:1.8.2
 jobManager:
 ...
 taskManager:
 ...
 job:
 autoSavepointSeconds: 300
 savepointsDir: gs://my-bucket/savepoints/
 ...

● Long-running jobs may fail for various reasons,
if you specify restartPolicy to
FromSavepointOnFailure, the operator can
automatically restart failed jobs from the latest
savepoint.

Feature: restarting jobs from the lastest savepoint

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: flinkjobcluster-sample
spec:
 ...
 job:
 autoSavePointSeconds: 300
 savepointsDir: gs://my-bucket/savepoints/
 restartPolicy: FromSavepointOnFailure
 ...

Feature: sidecar containers

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: beam-flink
spec:
 image:
 name: flink:1.8.1
 jobManager:
 resources:
 limits:
 memory: "1Gi"
 taskManager:
 replicas: 2
 resources:
 limits:
 memory: "2Gi"
 sidecars:
 - name: beam-sdk-worker
 image: apachebeam/python3.7_sdk:2.18.0
 args: ["--worker_pool"]
 flinkProperties:
 taskmanager.numberOfTaskSlots: "1"

● You can run sidecar containers along with TM
containers to provide services or proxies for
your job.

● This is the enabling feature for Beam on Flink
Operator.

Outline

● Why Flink Operator?
● Architecture and features
● Beam on Flink Operator

● Beam Python job -> Flink Java job + Python UDFs
● Beam runners are run by Flink TMs.
● UDFs in Python are run by Beam Python SDK workers:

○ Process mode
■ Beam runner in each Flink TM will automatically launch a Beam

SDK worker process.
■ This requires a custom Flink image with Beam SDK builtin.

○ Docker mode
■ Beam runner in each Flink TM will automatically launch a Beam

SDK worker container.
■ This requires running Docker in Docker on Kubernetes.

○ External mode
■ Beam runner doesn't launch Beam SDK worker by itself,

but sends a request to an external WorkerPool service
to launch one.

■ This is the mode we choose to run Beam Python jobs
with the operator.

How Flink runs Beam UDFs in Python

Flink TM Pod

Flink TM
container

Beam Python
SDK worker

container

● Create a Flink session cluster which run Beam
Python SDK workers as sidecar containers with
Flink TM containers.

Beam on Flink Operator (1/3): creating a Flink session cluster

apiVersion: flinkoperator.k8s.io/v1beta1
kind: FlinkCluster
metadata:
 name: beam-flink
spec:
 image:
 name: flink:1.8.1
 jobManager:
 resources:
 limits:
 memory: "1Gi"
 taskManager:
 replicas: 2
 resources:
 limits:
 memory: "2Gi"
 sidecars:
 - name: beam-sdk-worker
 image: apachebeam/python3.7_sdk:2.18.0
 args: ["--worker_pool"]
 flinkProperties:
 taskmanager.numberOfTaskSlots: "1"

kubectl apply -f <flinksessioncluster.yaml>

● Create a Kubernetes job which submits the
Beam Python job to the Flink session cluster.

Beam on Flink Operator (2/3): creating a Beam job submitter

apiVersion: batch/v1
kind: Job
metadata:
 name: beam-wordcount-py
spec:
 template:
 metadata:
 labels:
 app: beam-wordcount-py
 spec:
 containers:
 - name: beam-wordcount-py
 image: apachebeam/python3.7_sdk:2.18.0
 command: ["python3"]
 args:
 - "-m"
 - "apache_beam.examples.wordcount"
 - "--runner=FlinkRunner"
 - "--flink_master=beam-flink-jobmanager:8081"
 - "--flink_submit_uber_jar"
 - "--environment_type=EXTERNAL"
 - "--environment_config=localhost:50000"
 - "--input"
 - "/etc/ucf.conf"
 - "--output"
 - "/tmp/output"

kubectl apply -f <beam-job.yaml>

Beam on Flink Operator (3/3): checking job status and logs

Name: beam-wordcount-py
Namespace: default
Selector:
controller-uid=71e8ab00-d343-4928-8c92-ed80ed36a170
Labels: app=beam-wordcount-py

controller-uid=71e8ab00-d343-4928-8c92-ed80ed36a170
 job-name=beam-wordcount-py
Annotations: ...
Parallelism: 1
Completions: 1
Start Time: Tue, 11 Feb 2020 15:22:47 -0800
Pods Statuses: 1 Running / 0 Succeeded / 0 Failed
Pod Template:
 ...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 4m53s job-controller Created
pod: beam-wordcount-py-86fwp

kubectl describe jobs <name>

kubectl logs jobs/<name>

Q & A

