
© StorageOS, Inc.

Everything you need to know
about Storage for Kubernetes
Webinar
Alex Chircop

About me

• Founder & CEO of StorageOS, building a
software defined, cloud native storage platform

• Co-chair CNCF Storage SIG

• 25 years of engineering infrastructure platforms
before embarking on the startup adventure

• Previously Goldman Sachs and Nomura

• Twitter: @chira001

CNCF SIG Storage - Get involved!

The CNCF Storage SIG meets on the

2nd and 4th Wednesday of every month at 8AM PT (USA Pacific)

3

Call https://zoom.us/my/cncfstoragewg

SIG rep https://github.com/cncf/sig-storage

Meeting Minutes http://bit.ly/cncf-storage-sig-minutes

Mail List https://lists.cncf.io/g/cncf-sig-storage

https://zoom.us/my/cncfstoragewg
https://github.com/cncf/sig-storage
http://bit.ly/cncf-storage-sig-minutes
https://lists.cncf.io/g/cncf-sig-storage

Why is storage so important?

4

Why Storage?

There is no such thing
as a stateless
architecture!

All applications store
state somewhere...

5

Challenge: No Storage Pets!

Cloud Native Storage should be:

• Declarative & Composable

• API Driven

6

Challenge: Data needs to follow!

Cloud Native Storage should be:

• Application Centric

• Platform Agnostic

• Agile

7

Challenge: Humans are fallible - automate everything!

Cloud Native Storage should be:

• Consistently Available

• Performant

• Natively Secure

8

CNCF Storage Landscape Whitepaper

9

CNCF Storage Landscape Whitepaper

http://bit.ly/cncf-storage-whitepaper
• How is a storage system deployed
• Definition of the attributes of a storage system
• Definition of the layers in a storage solution with a focus

on terminology and how they impact the attributes
• Definition of the data access interfaces in terms of

volumes and application APIs
• Definition of the management interfaces

10

http://bit.ly/cncf-storage-whitepaper

Instantiation and Deployment

11

Instantiation Description

Hardware Deployed as hardware solution in a datacenter. This limits the
portability of the application and generally means that such systems
cannot be deployed in a public cloud environment

Software Deployed as software components on commodity hardware,
appliances or cloud instances. Software solutions tend to be more
platform agnostic and can be installed both on-premises as well as
cloud environments. Some software defined storage systems can also
be deployed as a container and deployment can be automated by
an orchestrator.

Cloud
Services

Consumed from public cloud providers. Cloud services provide
storage services in cloud environments.

Storage Attributes

12

Availability Scalability Performance Consistency Durability

Failover

Moving access
between nodes

Redundancy

Data protection

Clients

Operations

Throughput

Components

Latency

Operations

Throughput

Delay to access
correct data

after a commit

Delay between
commit and
data being

committed to
non-volatile

store

Data protection

Redundancy

Bit-Rot

Storage Layers

13

Orchestrator, Host and Operating System
Storage Topology

(centralized, distributed, sharded, hyperconverged)

Data Protection
(RAID, Erasure coding, Replicas)

Data Services
(Replication, Snapshots, Clones, etc.)

Physical, Non-Volatile Layer

Storage Topology Comparison

14

Local Remote Distributed
Availability Limited by failure of components

locally and ability to failover.
If a node fails, the local storage is
isolated to the local node.

May be limited by single points of
failure.
Workloads can move to another node and
reconnect to the remote storage.

Clients may access numerous nodes, and
any storage node failures can be
mitigated.
The additional complexity may also add
operational complexity which may affect
availability or the ability to recover errors.

Scalability Limited by local architecture
(1 node; typically TB)

Limited by monolithic architecture
(2-16 nodes; typically 10s-100s of TB)

Scale by adding additional systems.
(3-1000s nodes; often supports PB)

Consistency Yes
(storage system implementation is
easy)

Yes
(storage system implementation is harder
with more nodes)

Yes
(storage system implementation is hardest)

Durability Limited by local components
(less)

Limited by monolithic architecture
(more)

Scaling out to additional systems
increases durability (most)

Performance Limited by local components, can
benefit low-latency applications
(100us-5ms, GB/sec)

Similar to local, but additional overhead
in network transport (500us-5ms,
GB/sec)

Scaling out to additional systems
increases performance (500us-5ms,
GB/sec)

** The information in this table are generally accepted attributes and measurements among local, remote, and distributed storage systems.

Data Access Interfaces

Storage can be accessed via
Data Access Interfaces:

• Volumes – accessed
through a more traditional
file interface in a block or
filesystem interface

• API – other ways to persist
data such as object
stores, KV stores or
databases

15

Data Access Interface Comparison

16

Data Access
Interface Most suited Least suited

Block

● Availability
● Low latency performance
● Good throughput performance for individual

workloads

● Capacity scaling
● Sharing data with multiple

workloads simultaneously

Filesystem
● Sharing data with multiple workloads simultaneously
● Optimised throughput for aggregated workloads

● Strong file locking integrity
when filesystems are shared

Object Store

● Availability
● Large capacities (PB scale)
● Durability
● Sharing data with multiple workloads simultaneously
● Optimised throughput for parallelised workloads

● Low Latency performance

** The information in this table are generally accepted attributes and measurements for data access interfaces.

Orchestration and Management Interfaces

Container Orchestration system
(CO) uses an interface to interact
with a storage system

The storage system can:
(A) support control-plane API
directly
(B) interact via an API Framework
layer or other Tools

Workloads consume (C) storage via
a data access interface

17

Control Plane Interfaces

Container Storage Interface (CSI)
CSI v1.0.0 was released in November 2018. Standard for Kubernetes.
https://github.com/container-storage-interface/spec

K8S Native Drivers
Native drivers which are “in-tree” to K8S and provide the interfaces for Persistent
Volumes (PV) and Persistent Volume Claims (PVC)
https://kubernetes.io/docs/concepts/storage/

Docker Volume Driver Interface
Provides a mechanism for storage vendors to write a volume driver so that storage
systems can be used to provide volumes for a docker container.
https://docs.docker.com/storage/

K8S Flex Volume
“out of tree” external volume driver for K8S. Preference is now for CSI.
https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md

18

https://github.com/container-storage-interface/spec
https://kubernetes.io/docs/concepts/storage/
https://docs.docker.com/storage/
https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md

How is storage configured in Kubernetes?

19

Dynamic Provisioning in Kubernetes: StorageClass

20

An Example StorageClass

21

Dynamic Provisioning in Kubernetes: PersistentVolumeClaim

22

An example PersistentVolumeClaim

23

Dynamic Provisioning in Kubernetes: PersistentVolume

24

Using a volume in a pod

apiVersion: v1
kind: Pod
metadata:
name: test
spec:
containers:

- name: debian
image: debian:9-slim
command: ["/bin/sleep"]
args: ["3600"]
volumeMounts:
- mountPath: /mnt

name: v1
volumes:

- name: v1
persistentVolumeClaim:
claimName: pvc-1

25

K8s Node

/var/lib/kubelet/… is mount point for PV

Container

/mnt is mountpoint in container namespace

Storage

1. PVC is requested
2. Storage system creates volume (PV)
3. PV is attached to Node and mounted
4. Bind mount of the volume into specified path in container

Volume Access Modes

26

Access Mode Description

ReadWriteOnce
“RWO”

Volume is mounted and accessed exclusively by only one node.

ReadWriteMany
“RWX”

Volume can be mounted on multiple nodes at the same time.

Example of provisioning a stateful workload

27

Questions?

28

www.storageos.com

Thank You

© StorageOS, Inc.

Email: alex.chircop@storageos.com
Twitter: @chira001
Slack: slack.storageos.com

