
CNCF Webinar Series

Kubernetes Security Best Practices
Connor Gorman, Principal Engineer, StackRox
11 March 2020

2©2020 StackRox. All rights reserved.

What we’ll cover

• General Kubernetes hygiene

• Workload best practices

• Demo

• Questions?

3©2020 StackRox. All rights reserved.

What are we doing here?

4©2020 StackRox. All rights reserved.

Scratch that … Kubernetes is here!

5©2019 StackRox. All rights reserved.

Kubernetes Hygiene

6©2020 StackRox. All rights reserved.

Upgrade to a current version!

7©2020 StackRox. All rights reserved.

Keep up to date with Security and major API announcements
https://groups.google.com/forum/#!forum/kubernetes-announce

Kubernetes-Announce Google Group

https://groups.google.com/forum/#!forum/kubernetes-announce

8©2020 StackRox. All rights reserved.

Harden Node Security

Control network access to sensitive ports.

Make sure that your network restricts access to ports used by kubelet, including 10250
and 10255. Consider limiting access to the Kubernetes API server except from trusted
networks.

9©2020 StackRox. All rights reserved.

Harden Node Security

Minimize administrative access to Kubernetes nodes.

Access to the nodes in your cluster should generally be restricted — debugging and other
tasks can usually be handled without direct access to the node.

10©2020 StackRox. All rights reserved.

Enable Role-Based Access Control

Control who can access the Kubernetes API and what permissions they have.

11©2019 StackRox. All rights reserved.

Workload Best Practices

12©2020 StackRox. All rights reserved.

Contextualizing Risk

13©2020 StackRox. All rights reserved.

How can we think about Risk?

14©2020 StackRox. All rights reserved.

Leverage Namespaces

• Great for resource usage tracking

• Allows RBAC to be finely-tuned

• Allows for generic network policies and network segmentation

• Makes kubectl results more sane

15©2020 StackRox. All rights reserved.

Leverage Network Policies

• Pod-centric firewalling - Pod A can/can’t talk to Pod B

• Generic policies on Ingress/Egress can help ensure fine-grained connections

• Namespace isolation helps ensure compliance especially in multi-tenant
environments

Challenges

• What if my environment already exists?

• How can I scale network policies at my organization?

• How do I make sure that developers are enabled to build their own network policies?

16©2020 StackRox. All rights reserved.

Visualize Network Traffic and Policies

17©2020 StackRox. All rights reserved.

Slim down your images

• Go distroless or use lightweight base images

• Remove package managers and network utilities

• Remove filesystem modification utilities (chmod, chown)

• Scan and enforce to prevent them from entering your environment again

...how do I debug now?

18©2020 StackRox. All rights reserved.

• Alpha as of 1.16! So use with caution

• Allows binding of a new container to an existing Pod to facilitate the execution of
debugging commands, network utilities, etc

• Images no longer have to include: curl, apt, bash, or other utilities

Looking ahead to Ephemeral Containers!

19©2019 StackRox. All rights reserved.

Demo

20©2020 StackRox. All rights reserved.

Configurations to explore

• Read-only root file system

• Linux capabilities

• Network policies

• Host mounts

• Disable service account auto-mount

• Environment

• Resource requirements

21©2020 StackRox. All rights reserved.

Read-only filesystem

securityContext:
 readOnlyRootFilesystem: true

volumes:
 - emptyDir: {}
 name: varlog

Specifies read-only FS

Creates RAM based empty-dir

22©2020 StackRox. All rights reserved.

Example: Stopping a Struts exploit

Deploying a vulnerable container (with R/W root FS)

23©2020 StackRox. All rights reserved.

Example: Stopping a Struts exploit

The exploit works — we can download and run minerd.

24©2020 StackRox. All rights reserved.

Can my app be read-only?

$ docker diff k8s_nginx_nginx-7db9fccd9b-xyz
C /run
A /run/nginx.pid
A /run/secrets
A /run/secrets/kubernetes.io
A /run/secrets/kubernetes.io/serviceaccount
C /var
C /var/cache
C /var/cache/nginx
A /var/cache/nginx/client_temp
A /var/cache/nginx/fastcgi_temp
A /var/cache/nginx/proxy_temp
A /var/cache/nginx/scgi_temp
A /var/cache/nginx/uwsgi_temp

25©2020 StackRox. All rights reserved.

Example: Stopping a Struts exploit

After declaring a VOLUME for /usr/local/tomcat,
and opting-in for a read-only root FS:

26©2020 StackRox. All rights reserved.

Linux Capabilities

Split root superpowers into a series of capabilities such as

- CAP_FOWNER (used by chmod)

- CAP_CHOWN (used by chown)

- CAP_NET_RAW (used by ping)

27©2020 StackRox. All rights reserved.

Linux Capabilities

28©2020 StackRox. All rights reserved.

securityContext:
 capabilities:
 drop:
 - all

minerd
tar: minerd: Cannot change ownership to uid 1000, gid 1000: Operation not permitted
tar: Exiting with failure status due to previous errors

Example: Capabilities dropped

29©2020 StackRox. All rights reserved.

Network Policies

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-ns-monitoring
spec:
 podSelector:
 matchLabels:
 app: web
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 team: operations
 podSelector:
 matchLabels:
 type: monitoring

30©2019 StackRox. All rights reserved.

Security is Hard!

31©2019 StackRox. All rights reserved.

Let’s chat

Think of a question later?
cgorman@stackrox.com

Want to learn more?
https://www.stackrox.com/

We’re hiring!

https://www.stackrox.com/blackhat-2019/

