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What we’ll cover

• General Kubernetes hygiene

• Workload best practices

• Demo

• Questions?
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What are we doing here?
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Scratch that … Kubernetes is here!
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Kubernetes Hygiene
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Upgrade to a current version!
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Keep up to date with Security and major API announcements 
https://groups.google.com/forum/#!forum/kubernetes-announce

Kubernetes-Announce Google Group

https://groups.google.com/forum/#!forum/kubernetes-announce
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Harden Node Security

Control network access to sensitive ports. 

Make sure that your network restricts access to ports used by kubelet, including 10250 
and 10255. Consider limiting access to the Kubernetes API server except from trusted 
networks.
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Harden Node Security

Minimize administrative access to Kubernetes nodes. 

Access to the nodes in your cluster should generally be restricted — debugging and other 
tasks can usually be handled without direct access to the node.  



10©2020 StackRox. All rights reserved.

Enable Role-Based Access Control

Control who can access the Kubernetes API and what permissions they have.
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Workload Best Practices 
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Contextualizing Risk
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How can we think about Risk?
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Leverage Namespaces

• Great for resource usage tracking

• Allows RBAC to be finely-tuned

• Allows for generic network policies and network segmentation

• Makes kubectl results more sane
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Leverage Network Policies

• Pod-centric firewalling - Pod A can/can’t talk to Pod B

• Generic policies on Ingress/Egress can help ensure fine-grained connections

• Namespace isolation helps ensure compliance especially in multi-tenant 
environments

Challenges

• What if my environment already exists?

• How can I scale network policies at my organization?

• How do I make sure that developers are enabled to build their own network policies?
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Visualize Network Traffic and Policies
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Slim down your images

• Go distroless or use lightweight base images

• Remove package managers and network utilities

• Remove filesystem modification utilities (chmod, chown)

• Scan and enforce to prevent them from entering your environment again

...how do I debug now?
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• Alpha as of 1.16! So use with caution

• Allows binding of a new container to an existing Pod to facilitate the execution of 
debugging commands, network utilities, etc

• Images no longer have to include: curl, apt, bash, or other utilities

Looking ahead to Ephemeral Containers!
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Demo
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Configurations to explore

• Read-only root file system

• Linux capabilities

• Network policies

• Host mounts

• Disable service account auto-mount

• Environment

• Resource requirements
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Read-only filesystem

securityContext:
  readOnlyRootFilesystem: true

volumes:
  - emptyDir: {}
    name: varlog

Specifies read-only FS

Creates RAM based empty-dir
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Example: Stopping a Struts exploit

Deploying a vulnerable container (with R/W root FS)
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Example: Stopping a Struts exploit

The exploit works — we can download and run minerd.
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Can my app be read-only?

$ docker diff k8s_nginx_nginx-7db9fccd9b-xyz
C /run
A /run/nginx.pid
A /run/secrets
A /run/secrets/kubernetes.io
A /run/secrets/kubernetes.io/serviceaccount
C /var
C /var/cache
C /var/cache/nginx
A /var/cache/nginx/client_temp
A /var/cache/nginx/fastcgi_temp
A /var/cache/nginx/proxy_temp
A /var/cache/nginx/scgi_temp
A /var/cache/nginx/uwsgi_temp
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Example: Stopping a Struts exploit

After declaring a VOLUME for /usr/local/tomcat,
and opting-in for a read-only root FS:
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Linux Capabilities

Split root superpowers into a series of capabilities such as 

- CAP_FOWNER (used by chmod)

- CAP_CHOWN (used by chown)

- CAP_NET_RAW (used by ping) 
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Linux Capabilities
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securityContext:
  capabilities:
    drop:
      - all

minerd
tar: minerd: Cannot change ownership to uid 1000, gid 1000: Operation not permitted
tar: Exiting with failure status due to previous errors

Example: Capabilities dropped
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Network Policies

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: web-allow-all-ns-monitoring
spec:
  podSelector:
    matchLabels:
      app: web
  ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            team: operations  
        podSelector:
          matchLabels:
            type: monitoring
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Security is Hard!
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Let’s chat

Think of a question later?
cgorman@stackrox.com

Want to learn more?
https://www.stackrox.com/

We’re hiring!

https://www.stackrox.com/blackhat-2019/

