

Feeding the Kubernetes beast Bringing data locality back to data workloads

Adit Madan | Lead Engineer | adit@alluxio.com

Agenda

- Alluxio Overview
- Kubernetes Basics
- Alluxio Deployment Options
- Spark + Alluxio on Kubernetes Demo

Alluxio Overview

The Alluxio Story

-**amplab**//~

Originated as Tachyon project, at UC Berkeley AMPLab by then Ph.D. student & now Alluxio CTO, Haoyuan (H.Y.) Li.

Open Source project established & company to commercialize Alluxio founded

ANDREESSEN Horowitz Goal: Orchestrate Data at Memory Speed for the Cloud for data driven apps such as Big Data Analytics, ML and AI.

Fast-growing Open Source Community

Data Ecosystem - Beta

COMPUTE

Data Ecosystem 1.0

COMPUTE

Hewlett Packard Enterprise

ଭ

ceph

STORAGE

STORAGE

Data stack journey and innovation paths

Independent scaling of compute & storage

Alluxio – Key innovations

Data Locality

with Intelligent Multi-tiering

Data Accessibility

for popular APIs & API translation

Data Elasticity with a unified namespace

Accelerate big data workloads with transparent tiered local data Run Spark, Hive, Presto, ML workloads on your data located anywhere Abstract data silos & storage systems to independently scale data on-demand with compute

Flexible APIs to Interact with data in Alluxio

Spark > rdd = sc.textFile("alluxio://localhost:19998/myInput")

Presto CREATE SCHEMA hive.web WITH (location = 'alluxio://master:port/my-table/')

POSIX \$ cat /mnt/alluxio/myInput

Java FileSystem fs = FileSystem.Factory.get(); FileInStream in = fs.openFile(new AlluxioURI("/myInput"));

Alluxio Reference Architecture

Kubernetes Overview

an open-source system for automating deployment, scaling, and management of containerized applications.

What we'll cover

- Kubernetes Basics
- Alluxio Deployment Options
- Spark on Alluxio Demo

Container Orchestration Platform

- Abstract Physical Infrastructure
 - Platform Agnostic
 - On-premise, hybrid or in the public cloud
- Service Discovery
 - Networking abstraction
- Self-healing
 - Resilience to failures
- Secret Management
 - Management of sensitive credentials
- Storage Management
 - Lifecycle management tied to applications

Container	Container
Container	Container
Host	

- Containers
 - Docker Image = Lightweight OS and application execution environment
 - Container = Image once running on Docker Engine
- Pods
 - Schedulable unit of one or more containers
 - Containers share resources and network
- Controllers
 - Controls the desired state such as copies of a Pod
- Persistent Volumes
 - Storage provisioned by admin with lifecycle independent of a Pod

Some more K8s Basics...

• Declarative Specs

 Configure, deploy and manage an application on K8s using a declarative language

Helm Charts

- Thin wrapper over declarative specs
- Reduce complexity using a single configuration file

Operators

- Another abstraction layer over declarative specs to
- Built-in domain knowledge
- Manage upgrades and improve troubleshooting

Alluxio on Kubernetes

Data challenges

• Data Copy

• Multiple Copies of Data

• A Stateful Application on K8s can be hard

• Data Migration and Rebalancing on elasticity

• Changing applications for a new storage system can be hard

- Lack of familiar API
- Tuning can be challenging

Why Alluxio in K8s?

Elastic Data for Elastic Compute with Tight Locality

• Data locality

- Big data analytics or ML
- Cache data close to compute
- Enable high-speed data sharing across jobs
 - A closer staging storage layer for compute jobs

• Unification of persistent storage

Same data abstraction across different storage

Use Case: Zero Copy Bursting

Scenario:

Data Resides on-prem

Traditionally HDFS

Compute bursts into the Cloud

- Resources added on-demand
- Economical

Solution w/ Alluxio:

- Data Accessible Immediately
 - No ETL pipeline needs to be setup
- Data fetched on access
 - No persistent copies in the Cloud

Alluxio on K8s Architecture

Deploying Alluxio in K8s

 Presto

 Alluxio

 Legend:
 Pod

 Alluxio and Compute framework in the same pod

Alluxio and Compute framework in different pods on the same host

When do you use this?

- Compute, like Spark, is short running and ephemeral
- Alluxio data orchestration & access layer is long running and used across many jobs

When do you use this?

- Compute, like Presto, is long running
- Data tier with Alluxio needs to be scaled along with compute tier

Spark on Alluxio on K8s

Deploying Alluxio

• Provision a Persistent Volume for Journal

\$ kubectl create -f alluxio-journal-volume.yaml

• Specify Configuration

\$ kubectl create -f alluxio-configMap.yaml

• Deploy Master

\$ kubectl create -f alluxio-master.yaml

Deploy Workers

\$ kubectl create -f alluxio-worker.yaml

Alluxio Helm Chart

Now simplified...

```
$ cat << EOF > config.yaml
properties:
   alluxio.mount.table.root.ufs: "<under_storage_address>
   aws.accessKeyId: "<accessKey>"
   aws.secretKey: "<secretKey>"
EOF
```

\$ helm install -f config.yaml alluxio-repo/alluxio --version 2.1.0-SNAPSHOT

Ongoing Effort Upcoming Alluxio on K8s Features

• Scaling Alluxio for Large Production Deployments

- High-Availability in the absence of Zookeeper
- Off-Heap Metadata Layer
- Helm Chart
 - Greater Flexibility
 - Parity w/ Alluxio Features in a non-containerized environment
- · CSI
 - POSIX API Access
 - Ease of Access to Alluxio

Demo: Running Spark & Alluxio on K8s

Summary

- An Overview of Data Orchestration
- Alluxio enables elastic data for elastic compute in Kubernetes
 - Data Locality on Demand, Data Abstraction & Unification, Data Sharing
- A guide to run Alluxio in Kubernetes environment
- A demo of running Spark on Alluxio in Kubernetes

Questions?

Join the community on Slack alluxio.io/slack

DATA ORCHESTRATION SUMMIT

November 7, 2019 | Computer History Museum | Mountain View, CA Organized by ALLUXIO

Register Here!

Ryan Blue Netflix Sr. Software Engineer

Two Sigma

Du Li Electronic Arts Software Engineer

Carlos Queiroz Ben I Development Bank of O'F Singapore Chief Dat Head of Data Platform

en Lorica O'Reilly Data Scientist GN

avy Wang Maxime Beaucher Tencent Apache Airflow Tencent Cloud Founder

Roy Ben-Alta Amazon Web Services Head Of WW Data & Analytics

Walmart

Qiang Wang Rakuten

I Software Engineer Data Engineer Mar

Appendix

Kubernetes w/ Alluxio Components

- Containers
 - Master, Job Master, Worker, Job Worker
- Pods
 - Master, Worker
- Service
 - Master
- Daemon Sets
 - Workers
- Persistent Volumes
 - Master Journal, Worker Tiered Storage (optional)
- HostPath Volume
 - Worker Domain Socket Directory