
Building a Cloud-Native Technology Stack that 
Supports Full Cycle Development

Daniel Bryant
Product Architect, Ambassador Labs (formerly Datawire)



@danielbryantuk

● Being fully cloud native requires new tech and new workflows

● Creating a supporting cloud platform is essential:
○ Container orchestration
○ Progressive delivery
○ Edge management
○ Observability

● Consciously design your platform & watch for antipatterns

tl;dr



@danielbryantuk

@danielbryantuk



@danielbryantuk

A quick cloud native primer...

● Going “cloud native” offers benefits, but requires changes:
○ New technologies
○ Appropriate culture
○ New workflows

● Successful cloud native organisations have:
○ Created a self-service application platform
○ Adopted new tools and (full cycle) developer workflows 



@danielbryantuk

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

Full Cycle Developers

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249


@danielbryantuk

Full Cycle Developers: Team Topologies



@danielbryantuk

1. Container management

1. Progressive delivery

1. Edge management

1. Observability

Four cloud native platform requirements





@danielbryantuk

More Details on Full Cycle and K8s

https://blog.getambassador.io/enabling-full-cycle-development-are-
you-benefiting-from-your-move-to-kubernetes-d9eab2e94e7

● Successful cloud native organisations have:
○ Created a self-service application platform
○ Adopted new tools and (full cycle) 

developer workflows 

https://blog.getambassador.io/enabling-full-cycle-development-are-you-benefiting-from-your-move-to-kubernetes-d9eab2e94e7


Avoiding 
Platform Antipatterns



@danielbryantuk

Avoiding Platform Antipatterns

Centralized Control and Ownership: One Size Doesn’t Fit All

Fragmented Platform Implementation

Slow Development Loops: Less Time Coding, More Time Toiling



@danielbryantuk

Antipattern: Centralized Control and Ownership

● (Dis)economies of scale

● Overzealous guardrails

● Modification is ticket-driven



Antipattern: Fragmented Platform Implementation

https://speakerdeck.com/stilkov/microservices-patterns-and-antipatterns-1?slide=12

https://speakerdeck.com/stilkov/microservices-patterns-and-antipatterns-1?slide=12


Antipattern: Slow Development Loops

https://mitchdenny.com/the-inner-loop/

https://mitchdenny.com/the-inner-loop/


Exploring the 
Platform Capabilities



@danielbryantuk

1. Container management

1. Progressive delivery

1. Edge management

1. Observability

Four Core Platform Capabilities



Container Management:
Kubernetes



@danielbryantuk

Manage and run container-based applications at scale and on a 
variety of infrastructures

● Developers 
○ Self-service interactions: automated and observable 

● Platform team
○ Set policies around access, control, and auditability

Container Management



@danielbryantuk

Kubernetes Decisions

● To self-host, or not to self-host?

● Which distro?

● Going all-in on a cloud?



@danielbryantuk

Kubernetes Challenges

● Foundations for a PaaS-like experience?
○ Helm and Helmfile for deployment

● Developer productivity
○ Local-to-remote dev and test



Progressive Delivery:
Delivery Pipelines



@danielbryantuk

Supporting the creation of pipelines that enable the automated 
build, verification, deployment, release, and observability

● Developers 
○ Self-service interactions: automated and observable

● Platform team
○ Centralize verification of quality and security properties

https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/

Progressive Delivery

https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/


@danielbryantuk

Progressive Delivery Decisions

● Deliver any and all application changes into production as 
rapidly and as safely as the organisation requires
○ Pipeline practices 
○ Pipeline technology

https://www.infoq.com/news/2020/03/reimagining-cicd-pipelines/

https://www.infoq.com/news/2020/03/reimagining-cicd-pipelines/


@danielbryantuk

Progressive Delivery Challenges

● Collaboration between dev, QA, and ops

● Balance one-size-fits-all vs chaos

● Make it easy to do the right thing



Edge Management:
Ingress and API Gateways



@danielbryantuk

Enable the self-service release of new functionality by 
developers, while maintaining stability 

● Developers
○ Decentralized traffic management
○ Support NFRs e.g. authn/z, retries, and circuit breaking

● Platform
○ Centralized configuration of sane defaults
○ TLS, authn/z, and rate limiting for DDoS protection

Edge Management



@danielbryantuk

Edge Stack Decisions

● Edge technologies
○ Envoy becoming the de facto standard(?)
○ xDS APIs / Ingress v2

● Deploy/release workflows
○ Declarative (CRDs)
○ Self-service



@danielbryantuk

Edge Stack Challenges

● Scaling edge management

● Supporting multiple protocols and NFRs

https://www.getambassador.io/resources/challenges-api-gateway-kubernetes/

https://www.getambassador.io/resources/challenges-api-gateway-kubernetes/


Observability:
Metrics, Logging, Tracing



@danielbryantuk

Support the collection and analysis of end user and application 
feedback directly by developers and the platform team.

● Developers
○ Enable product teams to observe and iterate against 

business goals and KPIs

● Platform
○ Observe and managing infrastructure, and ensure their 

service level objectives (SLOs) are met

Observability



@danielbryantuk

Observability Decisions

● Adoption (monitor all-the-things?)

● Technology selection (standards)
○ Metrics
○ Logging
○ Distributed tracing

● Joining the dots 



@danielbryantuk

Observability Challenges

● Self-service config and dashboards

● Increasing signal-to-noise

● Fault location

https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c


Wrapping Up



@danielbryantuk

● Being fully cloud native requires new tech and new workflows
○ Lots to be learned from full cycle development

● Creating a supporting cloud platform is essential
○ Container orchestration
○ Progressive delivery
○ Edge management
○ Observability

● Consciously design your platform & watch for antipatterns

In Summary



@danielbryantuk

app.getambassador.io/

thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/

https://app.getambassador.io/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/


@danielbryantuk

Read “Building a Kubernetes Platform”:
https://www.getambassador.io/learn/building-kubernetes-platform/

Subscribe to podcasts:
https://www.getambassador.io/podcasts/

Follow us on Twitter:
https://twitter.com/getambassadorio

Ambassador CNCF Incubations proposal:
https://github.com/cncf/toc/pull/435

Learning More...

https://www.getambassador.io/learn/building-kubernetes-platform/
https://www.getambassador.io/podcasts/
https://twitter.com/getambassadorio
https://github.com/cncf/toc/pull/435

