
Lachlan Evenson,
Microsoft

CNCF Ambassador

Navigating the 
service mesh 
ecosystem

Photos: Bridget Kromhout



What is Service Mesh Interface (SMI)?
Announced in May 2019, Service Mesh Interface (SMI) is a specification for 
service meshes that run on Kubernetes. It defines a common standard that 
can be implemented by a variety of providers. 

Service Mesh Interface provides:
•A standard interface for meshes on Kubernetes
•A basic feature set for the most common mesh use cases
•Flexibility to support new mesh capabilities over time
•Space for the ecosystem to innovate with mesh technology



Initial specifications for the top three service mesh features covering the 
most common service mesh capabilities:

•Traffic policy – apply policies like identity and transport encryption across 
services

•Traffic telemetry – capture key metrics like error rate and latency between 
services

•Traffic management – shift and weight traffic between different services



Why does the ecosystem need SMI?
Provider Agnostic

The goal of SMI is to provide a common, portable set of service mesh APIs which a Kubernetes user 
can use in a provider agnostic manner. In this way people can define applications that use service 
mesh technology without tightly binding to any specific implementation.

Kubernetes Native

SMI is specified as a collection of Kubernetes Custom Resource Definitions (CRD) and Extension API 
Servers. These APIs can be installed onto any Kubernetes cluster and manipulated using standard 
tools.

Extensible

With many exciting mesh capabilities in development, we fully expect to evolve SMI APIs over time, 
and look forward to extending the current specification with new capabilities.



Service Mesh Interface (SMI)
SMI defines a set of APIs that can be 
implemented by individual mesh 
providers. Service meshes and tools can 
either integrate directly with SMI or an 
adapter can consume SMI and drive 
native mesh APIs.

Service Mesh Interface aims to provide:

• Standard interface for service mesh on 
Kubernetes

• Basic feature set to address most 
common scenarios

• Extensible to support new features as 
they become widely available

Apps Tooling Ecosystem

Service Mesh Interface
Routing Telemetry Policy

Kubernetes

…and more

SMI in the service mesh ecosystem



What APIs are included?

•Traffic Access Control - configure access to specific pods and routes based 
on the identity of a client for locking down applications to only allowed users 
and services.

•Traffic Specs - define how traffic looks on a per-protocol basis. These resources 
work in concert with access control and other types of policy to manage traffic 
at a protocol level.

•Traffic Split - incrementally direct percentages of traffic between various 
services to assist in building out canary rollouts.

•Traffic Metrics - expose common traffic metrics for use by tools such as 
dashboards and autoscalers.

https://github.com/deislabs/smi-spec/blob/master/traffic-access-control.md
https://github.com/deislabs/smi-spec/blob/master/traffic-specs.md
https://github.com/deislabs/smi-spec/blob/master/traffic-split.md
https://github.com/deislabs/smi-spec/blob/master/traffic-metrics.md


Latest Release Working Draft

Core Specification:
SMI Specification v0.5.0 v0.6.0-WD

Specification Components
Traffic Access Control v1alpha2 v1alpha3-WD
Traffic Metrics v1alpha1 v1alpha2-WD
Traffic Specs v1alpha3 v1alpha4-WD
Traffic Split v1alpha3 v1alpha4-WD

SMI Spec Status

https://github.com/servicemeshinterface/smi-spec/blob/master/SPEC_LATEST_STABLE.md
https://github.com/servicemeshinterface/smi-spec/blob/master/SPEC_WORKING_DRAFT.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-access/v1alpha2/traffic-access.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-access/traffic-access-WD.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-metrics/v1alpha1/traffic-metrics.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-metrics/traffic-metrics-WD.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-specs/v1alpha3/traffic-specs.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-specs/traffic-specs-WD.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-split/v1alpha3/traffic-split.md
https://github.com/servicemeshinterface/smi-spec/blob/master/apis/traffic-split/traffic-split-WD.md


SMI Technical Overview

•Kubernetes Custom Resource Definitions (CRD)
•Installable on any Kubernetes cluster
•interact using standard Kubernetes tools like kubectl

•SMI provider runs in Kubernetes cluster to act on APIs
•for configurable resources:

•reflects back on their contents
•configures the provider's components within a cluster

•for extension APIs:
•translates from internal types to return types

•SMI SDK for Go for easy of implementation

•Common components
•Extension API Servers: https://github.com/servicemeshinterface/smi-metrics
•Init containers
•Innovate on functionality instead of retreading the same patterns

https://github.com/servicemeshinterface/smi-metrics




SMI Community & Code Repositories

•Joined CNCF as Sandbox project, April 2020: smi-spec.io/blog/smi-joins-cncf/
•SMI site: smi-spec.io
•GitHub: https://github.com/servicemeshinterface/

•Meetings - every other Wednesday, 10am PT -
https://github.com/servicemeshinterface/smi-spec#communications
•Slack – CNCF Slack #smi
•SMI SDK for Golang - https://github.com/servicemeshinterface/smi-sdk-go
•SMI adapter for Istio - https://github.com/servicemeshinterface/smi-adapter-istio
•Expose SMI Metrics - https://github.com/servicemeshinterface/smi-metrics
•SMI Website - https://github.com/servicemeshinterface/smi-spec.io

https://smi-spec.io/blog/smi-joins-cncf/
https://smi-spec.io/
https://github.com/servicemeshinterface/
https://github.com/servicemeshinterface/smi-spec
https://github.com/servicemeshinterface/smi-sdk-go
https://github.com/servicemeshinterface/smi-adapter-istio
https://github.com/servicemeshinterface/smi-metrics
https://github.com/servicemeshinterface/smi-spec.io


SMI Goals & Non-Goals

•Goals
•define common, portable set of Service Mesh APIs
•provider agnostic
•enable ecosystem tools to innovate and offer higher-level services
•iterate over time as the service mesh ecosystem evolves

•Non-Goals
•implement a service mesh offered by the SMI project
•require implementation of specific SMI APIs
•restrict what it means to be a service mesh: providers are welcome 
to add provider-specific extensions and APIs beyond the SMI spec



Open Service Mesh (OSM)
openservicemesh.io

Announced August 
2020: openservicemesh.io/blog/introducing-open-
service-mesh/

OSM is being proposed for 
CNCF donation: github.com/cncf/toc/pull/507

OSM welcomes you to 
the project: github.com/openservicemesh/osm/

Apps Tooling Ecosystem

Service Mesh Interface
Routing Telemetry Policy

Kubernetes

Open Service Mesh: Adding to the SMI ecosystem

https://openservicemesh.io/
https://openservicemesh.io/blog/introducing-open-service-mesh/
https://github.com/cncf/toc/pull/507
https://github.com/openservicemesh/osm/




Open Service Mesh (OSM) is a lightweight and extensible cloud native service 
mesh.

OSM takes a simple approach for users to uniformly manage, secure, 
and get out-of-the box observability features for highly dynamic 
microservice environments.

Using the CNCF Envoy project, OSM implements Service Mesh 
Interface (SMI) for securing and managing your microservice 
applications.

Open Service Mesh (OSM)



OSM principles
� Simple to understand and contribute to
� Effortless to install, maintain, and operate
� Painless to troubleshoot
� Easy to configure via Service Mesh Interface (SMI)



OSM features
� Easily and transparently configure traffic shifting for deployments
� Secure end-to-end service to service communication by enabling 

mTLS
� Define and execute fine grained access control policies for services
� Observability and insights into application metrics for debugging and 

monitoring services
� Integrate with external certificate management services/solutions 

with a pluggable interface
� Onboard applications onto the mesh by enabling automatic sidecar 

injection of Envoy proxy
� Flexible enough to handle both simple and complex scenarios through 

SMI and Envoy XDS APIs





OSM Demo



Service Mesh Interface (SMI) specification
smi-spec.io

Service Mesh Interface (SMI) ecosystem
github.com/servicemeshinterface/smi-spec#ecosystem

Open Service Mesh (OSM) 
openservicemesh.io
github.com/openservicemesh/osm

Service Mesh Ecosystem summary

https://smi-spec.io/
https://github.com/servicemeshinterface/smi-spec
http://vhttps:0/openservicemesh.io/
https://github.com/openservicemesh/osm/

