Comparing eBPF and
Istio/Envoy for
Monitoring Microservice
Interactions

Jonathan Perry
Roko Kruze

o...'o
coe@e- FLOWMILL
......

Join us for KubeCon + CloudNativeCon EU Virtual

Event dates: August 17-20, 2020
Schedule: Now avadilable!
Cost: S75

Full Event Pass and
Complimentary Pass are now
available! Unsure what pass is

the best for you? See the chart!

Which pass is the best option /&rm& .7

_ i comp“me"ta'y ==

v

All Keynote Sessions
All Breakout Sessions
All Lightning Talks
All Tutorials + 101 Track
Live Q+A with Speakers
Sponsor Showcase

Sponsor Demo Theater

AN

Engage with Project Maintainers + Leads
Networking including Chat + Job Board

Experiences including Yoga, Meditation,
Games, + Musical Performance

Ability to Register for Co-Located Events

50% off Certified Kubernetes
Administrator or Application Developer
Training + Exam Bundle

S TS SIS SIS TS S TS N IS IS
%

https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/program/schedule/

Hi! I'm Jonathan Perry

jperry@flowmill.com

www.flowmill.com

e Government: large-scale deployments
e MIT: extreme monitoring systems

o prod at Facebook
e Flowmill: Founder

mailto:jperry@flowmill.com
http://www.flowmill.com

Hi! I'm Roko Kruze

rkruze@flowmill.com

www.flowmill.com

e Solutions Engineer
e Experience with large scale distributed
systems

mailto:rkruze@flowmill.com
http://www.flowmill.com

Bl Two Approaches to Observability

Service Mesh (Istio + Envoy) | eBPF (Berkeley Packet Filter)

« Benefits « Approaches
« Metrics available e Metrics available
« Considerations

Il Benefits of a Service Mesh

Traffic Management | Security Observability
+ Circuit Breakers + Auth[n,z] . Tracing
 Timeouts/Retries + Encryption « Monitoring

. A/B testing . Logging

Hl Istio and Envoy Architecture

FLOWMILL

Istio Mesh

Service A @ Service B

Istio Architecture

Mesh traffic
_ Proxy > Poxy B————
Ingress I Egress
watfc A A | traffic
[}
|
| | I
| ' : '
. : |
I 1 Discovery ! |
| ; Configuration | |
| Certificates |
- - - —- - - - - R |
l Control plane , |
|
1 I
| I
| istiod Pilot Citadel Galley :
| |
|
|
{

B Metrics from Istio

HTTP, HTT2/2, GRPC:

Request Count
Request Duration
Request Size

Response Size

For TCP traffic:
TCP Byte Sent
TCP Byte Received
TCP Connections Opened

TCP Connections Closed

AN
*®c FLOWMILL

istio_request_total
istio_request_duration_milliseconds
istio_request_bytes

istio_response_bytes

istio_tcp_sent_bytes total
istio_tcp_received_bytes_total
istio_tcp _connections_opened_total

istio_tcp_connections_closed_total

COUNTER

DISTRIBUTION

DISTRIBUTION

DISTRIBUTION

COUNTER

COUNTER

COUNTER

COUNTER

B Network Layer vs Application Layer

Network layer metrics not - Istio and Envoy are
available in a service mesh: primarily designed as
- Round trip time (RTT) an application layer
. Retransmissions / Packet service mesh
loss
« UDP traffic You need another tool
« DNS such as eBPF to get

more detailed network
data

B Measuring Istio Overhead: Microservices-demo

L] GoogleCloudPlatform / microservices-demo

eeeee

One-stop for Hipster Fashion & Style Online
ream fashion ideas, popular trends and societal norms? This line of lifestyle products will help you catch

ing hip and vintage items now!

|

e 1(0
[- \¢’ K_\
% & ®
B 0
)@e\‘.
er: Home Barista Kit
B

qithub.com/GoogleCloudPlatform/microservices-demo

oo
®e- FLOWMILL

3 node EKS cluster in AWS
cb.xlarge instances
Istio version 1.6.5 [default profile

Locust simulating 500 users,
running outside cluster

10

https://github.com/GoogleCloudPlatform/microservices-demo

B Benchmark Results

Baseline Istio + Envoy Percent Change
application
CPU Utilization
(cluster) 13% 22% +69%
P50 Response Time
16ms 25ms +56%

P90 Response Time 33ms 48ms +45%

I eBPF

Linux bpf() system call since 3.18

Run code on kernel events

Only changes, more data

Safe: In-kernel verifier, read-only

Fast: JIT-compiled

Unofficial BPF mascot by Deirdré Straughan

12

https://twitter.com/DeirdreS

B Metrics that can be provided by eBPF

From nhttps:/qgithub.com/iovisor/bcc

tools/tcpaccept.bt: Trace TCP passive connections (accept()). Examples.

tools/tcpconnect.bt: Trace TCP active connections (connect()). Examples.

tools/tcpdrop.bt: Trace kernel-based TCP packet drops with details. Examples.

tools/tcplife.bt: Trace TCP session lifespans with connection details. Examples.

tools/tcpretrans.bt: Trace TCP retransmits. Examples.

tools/tcpsynbl.bt: Show TCP SYN backlog as a histogram. Examples.

13

https://github.com/iovisor/bcc

B Using eBPF

iovisor / bcc

Demo:

to run a bcc container:

docker run -it --rm \
--privileged \
-v /lib/modules:/lib/modules:ro \
-v /usr/src:/usr/src:ro \
-v /etc/localtime:/etc/localtime:ro \
--workdir /usr/share/bcc/tools \
--pid=host \
zlim/bcc

https://qithub.com/iovisor/bcc/blob/master/ QUICKSTART.md

+ host pid namespace

.'....
c®c FLOWMILL

© Watch~ 439 % Star | 6,735 % Fork

tcptop:

e instruments tcp_sendmsg and
tcp_cleanup _rbuf

1,130

14

https://github.com/iovisor/bcc/blob/master/QUICKSTART.md

4782
20663

4781

8055

13205
13089
13086

shippings:

shippingserv

shippings
shippings:

shippingser

shippingser

shippingser

shippingserv

136184

34 150051
n 127.0.0,1:50¢ 7.0.0.1:36184

LADDRG RADDRG
fiff: 31. AR
fff:172.31. 5€ s ffff

fff:172.31.44,33:4443 saffff:l
siffff:l
iffff:

50051 siffff

50051 affff:l
siffff:l
5:50051 iffff:l

5:50051 iffff:l

i ffff

R AR

SFFff:l
(ffff:1

s t1if:
¢

metrics-serv

shippingserv

metrics-serv

coredns

metrics-serv

sh ingserv

shippings

shippingserv

shippingse

shippingserv
sh ingserv

sh serv

sh

. 75:50051
5:50051
150051
5:50051

. 75:50051
75:50051
5:50051
5:50051
50051

50051

75

ippingservy

shippingserv

shippingserv

. 75:50051
5:50051

shippingserv

ngserv

shippingserv

136872

136940

36896

https://docs.google.com/file/d/1W2mugquaw4Ci0Pv3jAvActZCOJQPmPBm/preview

B Using eBPF

iovisor / bcc

© Watch~ 439 % Star | 6,735 ¥ Fork 1,130

Demo: tcptop:

to run a bcc container: ¢

docker run -it --rm \
--privileged \ ()
-v /lib/modules:/lib/modules:ro \
-v /usr/src:/usr/src:ro \
-v /etc/localtime:/etc/localtime:ro \
--workdir /usr/share/bcc/tools \
--pid=host \
zlim/bcc

https://qithub.com/iovisor/bcc/blob/master/ QUICKSTART.md
+ host pid namespace

.'....
c®c FLOWMILL

instruments tcp_sendmsg and
tcp_cleanup _rbuf

need to be careful of races:
IPv4: build dict of all seen keys
ipv4_throughput = defaultdict(lambda: [0, 01)

for k, v in ipv4_send_bytes|items(): |
key = get_ipv4_session_key(k)

ipv4_throughput[key1[0] = v.value
ipv4_send_bytes[clear() |<

as for loop is running, kernel continues with
updates, clear() throws those out.

16

https://github.com/iovisor/bcc/blob/master/QUICKSTART.md

B Getting application error codes

e eBPF supports user probes

$ go tool nm /root/hello | grep 'net/http\.’ $ /funccount -p 31328 '/root/hello:net/http.*Headerx'
690a40 t net/http.Error Tracing 111 functions for
64eeed t net/http.Get "/root/hello:net/http.*Headerx"... Hit Ctrl-C to end.
6929e0 t net/http.HandleFunc ~C
6b6230 t net/http.Handler.ServeHTTP-fm FUNC COUNT
6909e0 t net/http.HandlerFunc.ServeHTTP net/http.Header.Del 3
6805b0 t net/http.Header.Add net/http.Header.sortedKeyValues 3
680700 t net/http.Header.Del net/http.Header .WriteSubset 3
680690 t net/http.Header.Get net/http. (*response).WriteHeader 3
680620 t net/http.Header.Set net/http.extraHeader.Write 3
680750 t net/http.Header.Write net/http. (xchunkWriter).writeHeader 3
681190 t net/http.Header.WriteSubset net/http. (*chunkWriter).writeHeader.funcl 3
680840 t net/http.Header.clone Detaching. ..

cew-
c®c FLOWMILL

B Benchmark Results

Baseline tcptop from bcc Percent Change
application
CPU Utilization
(cluster) 13% 14% +7%
P50 Response Time
16ms 16ms 0%

P90 Response Time 33ms 33ms 0%

M Istio/Envoy Trade Offs

Strengths:

Detailed Application
Metrics

Security

Encryption

Traffic Management

Weaknesses:

Resource overhead
Increased Latency
Network Layer
Metrics not available

B cBPF Trade Offs

Strengths: Weaknesses:
« Detailed Network « No full open source
Layer Metrics solution

« Can be optimized for
minimal impact

- Bringing it all together

Using a service mesh along with eBPF allows for
deep observibility at both the application and
network layer.

eBPF can help identify network issues that could
affect the health of the service mesh.

B Further questions on eBPF?

At Flowmill we are working with eBPF to bring network visibility to
network applications.

<info@flowmill.com>

www.flowmill.com

FLOWMILL 22

mailto:info@flowmill.com
http://www.flowmill.com

