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Hi! I'm Jonathan Perry

jperry@flowmill.com

www.flowmill.com

e Government: large-scale deployments
e MIT: extreme monitoring systems

o prod at Facebook
e Flowmill: Founder
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Bl Two Approaches to Observability

Service Mesh (Istio + Envoy) | eBPF (Berkeley Packet Filter)

« Benefits « Approaches
« Metrics available e Metrics available
« Considerations




Il Benefits of a Service Mesh

Traffic Management | Security Observability
+ Circuit Breakers + Auth[n,z] . Tracing
 Timeouts/Retries + Encryption « Monitoring

. A/B testing . Logging




Hl Istio and Envoy Architecture
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B Metrics from Istio

HTTP, HTT2/2, GRPC:

Request Count
Request Duration
Request Size

Response Size

For TCP traffic:
TCP Byte Sent
TCP Byte Received
TCP Connections Opened

TCP Connections Closed
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istio_request_total
istio_request_duration_milliseconds
istio_request_bytes

istio_response_bytes

istio_tcp_sent_bytes total
istio_tcp_received_bytes_total
istio_tcp _connections_opened_total

istio_tcp_connections_closed_total
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B Network Layer vs Application Layer

Network layer metrics not - Istio and Envoy are
available in a service mesh: primarily designed as
- Round trip time (RTT) an application layer
. Retransmissions / Packet service mesh
loss
« UDP traffic  You need another tool
« DNS such as eBPF to get

more detailed network
data




B Measuring Istio Overhead: Microservices-demo

L] GoogleCloudPlatform / microservices-demo
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3 node EKS cluster in AWS
cb.xlarge instances
Istio version 1.6.5 [ default profile

Locust simulating 500 users,
running outside cluster
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https://github.com/GoogleCloudPlatform/microservices-demo

B Benchmark Results

Baseline Istio + Envoy Percent Change
application
CPU Utilization
(cluster) 13% 22% +69%
P50 Response Time
16ms 25ms +56%

P90 Response Time 33ms 48ms +45%



I eBPF

Linux bpf() system call since 3.18

Run code on kernel events

Only changes, more data

Safe: In-kernel verifier, read-only

Fast: JIT-compiled

Unofficial BPF mascot by Deirdré Straughan
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https://twitter.com/DeirdreS

B Metrics that can be provided by eBPF

From nhttps:/qgithub.com/iovisor/bcc

tools/tcpaccept.bt: Trace TCP passive connections (accept()). Examples.

tools/tcpconnect.bt: Trace TCP active connections (connect()). Examples.

tools/tcpdrop.bt: Trace kernel-based TCP packet drops with details. Examples.

tools/tcplife.bt: Trace TCP session lifespans with connection details. Examples.

tools/tcpretrans.bt: Trace TCP retransmits. Examples.

tools/tcpsynbl.bt: Show TCP SYN backlog as a histogram. Examples.
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https://github.com/iovisor/bcc

B Using eBPF

iovisor / bcc

Demo:

to run a bcc container:

docker run -it --rm \
--privileged \
-v /lib/modules:/lib/modules:ro \
-v /usr/src:/usr/src:ro \
-v /etc/localtime:/etc/localtime:ro \
--workdir /usr/share/bcc/tools \
--pid=host \
zlim/bcc

https://qithub.com/iovisor/bcc/blob/master/ QUICKSTART.md

+ host pid namespace

.'....
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© Watch~ 439 % Star | 6,735 % Fork

tcptop:

e instruments tcp_sendmsg and
tcp_cleanup _rbuf

1,130
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https://github.com/iovisor/bcc/blob/master/QUICKSTART.md
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https://docs.google.com/file/d/1W2mugquaw4Ci0Pv3jAvActZCOJQPmPBm/preview

B Using eBPF

iovisor / bcc

© Watch~ 439 % Star | 6,735 ¥ Fork 1,130

Demo: tcptop:

to run a bcc container: ¢

docker run -it --rm \
--privileged \ ()
-v /lib/modules:/lib/modules:ro \
-v /usr/src:/usr/src:ro \
-v /etc/localtime:/etc/localtime:ro \
--workdir /usr/share/bcc/tools \
--pid=host \
zlim/bcc

https://qithub.com/iovisor/bcc/blob/master/ QUICKSTART.md
+ host pid namespace

.'....
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instruments tcp_sendmsg and
tcp_cleanup _rbuf

need to be careful of races:
# IPv4: build dict of all seen keys
ipv4_throughput = defaultdict(lambda: [0, 01)

for k, v in ipv4_send_bytes|items(): |
key = get_ipv4_session_key(k)

ipv4_throughput[key1[0] = v.value
ipv4_send_bytes[clear() |<

as for loop is running, kernel continues with
updates, clear() throws those out.
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B Getting application error codes

e eBPF supports user probes

$ go tool nm /root/hello | grep 'net/http\.’ $ /funccount -p 31328 '/root/hello:net/http.*Headerx'
690a40 t net/http.Error Tracing 111 functions for
64eeed t net/http.Get "/root/hello:net/http.*Headerx"... Hit Ctrl-C to end.
6929e0 t net/http.HandleFunc ~C
6b6230 t net/http.Handler.ServeHTTP-fm FUNC COUNT
6909e0 t net/http.HandlerFunc.ServeHTTP net/http.Header.Del 3
6805b0 t net/http.Header.Add net/http.Header.sortedKeyValues 3
680700 t net/http.Header.Del net/http.Header .WriteSubset 3
680690 t net/http.Header.Get net/http. (*response).WriteHeader 3
680620 t net/http.Header.Set net/http.extraHeader.Write 3
680750 t net/http.Header.Write net/http. (xchunkWriter).writeHeader 3
681190 t net/http.Header.WriteSubset net/http. (*chunkWriter).writeHeader.funcl 3
680840 t net/http.Header.clone Detaching. ..

cew-
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B Benchmark Results

Baseline tcptop from bcc Percent Change
application
CPU Utilization
(cluster) 13% 14% +7%
P50 Response Time
16ms 16ms 0%

P90 Response Time 33ms 33ms 0%



M Istio/Envoy Trade Offs

Strengths:

Detailed Application
Metrics

Security

Encryption

Traffic Management

Weaknesses:

Resource overhead
Increased Latency
Network Layer
Metrics not available



B cBPF Trade Offs

Strengths: Weaknesses:
« Detailed Network « No full open source
Layer Metrics solution

« Can be optimized for
minimal impact



- Bringing it all together

Using a service mesh along with eBPF allows for
deep observibility at both the application and
network layer.

eBPF can help identify network issues that could
affect the health of the service mesh.



B Further questions on eBPF?

At Flowmill we are working with eBPF to bring network visibility to
network applications.

<info@flowmill.com>

www.flowmill.com
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