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Who am I?

Nick Chase
• Long-time programmer
• Head of Technical and Marketing Content for 

Mirantis
• Editor in Chief of Open Cloud Digest
• Author of Machine Learning for Mere Mortals
• Absolutely NOT a math major
• nchase at mirantis dot com
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Shhhhhh.....

Turns out, this is not as tough as you think.



Special Bonus

• Free early access to Machine Learning for Mere 
Mortals for live attendees

http://bit.ly/machine_learning_course
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Agenda

• What is machine learning?
• Types of machine learning
• Problems facing the datacenter and how ML can 

solve them 
• You, yes, YOU, can do this (and I'll prove it)
• Intelligent Delivery datacenter and how to start
• Q&A
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Introduction
 Just what is machine learning, 

anyway?
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What is machine learning?

Machine learning is the study of enabling a 
computer to perform in situations it may not have 

seen before.
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Where can we see ML today?

• Analytics
• Advertising
• Bots
• Pattern recognition
• NLP
• Search
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Where can we see ML today?

• Analytics
• Advertising
• Bots
• Pattern recognition
• NLP
• Search
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• Image recognition 
• Video analysis
• Threat detection
• Medicine
• Self driving cars



Lots of hype

• Existing companies 
http://indeedhi.re/2nFRKY0
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● Amazon.com (1252)
● JPMorgan Chase (733)
● Goldman Sachs (674)
● Microsoft (580)
● Apple (322)
● Google (217)
● Facebook (217)
● KPMG (148)
● Jobspring Partners (124)
● Capital One (118)
● NVIDIA (116)
● Strategic IT Staffing (111)
● Oracle (110)
● Lockheed Martin (106)
● IBM (101)

http://indeedhi.re/2nFRKY0
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Amazon.com&jcid=fe2d21eef233e94a
https://www.indeed.com/jobs?q=Machine+Learning&rbc=JPMorgan+Chase&jcid=11ba90543b779766
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Goldman+Sachs&jcid=16a97ed26c75bf2d
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Microsoft&jcid=734cb5a01ee60f80
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Apple&jcid=c1099851e9794854
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Google&jcid=a5b4499d9e91a5c6
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Facebook&jcid=1639254ea84748b5
https://www.indeed.com/jobs?q=Machine+Learning&rbc=KPMG&jcid=2dd390c3a48a7ed0
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Jobspring+Partners&jcid=4a2d2fbadf14d480
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Capital+One&jcid=b85c5070c3d3d8c8
https://www.indeed.com/jobs?q=Machine+Learning&rbc=NVIDIA&jcid=c267f29f0f85e8b8
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Strategic+IT+Staffing&jcid=028ef7f5b4e7c045
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Oracle&jcid=cd22d01053af7669
https://www.indeed.com/jobs?q=Machine+Learning&rbc=Lockheed+Martin&jcid=aeb15e43a6800b9d
https://www.indeed.com/jobs?q=Machine+Learning&rbc=IBM&jcid=de71a49b535e21cb


Lots of hype

• New companies (http://bit.ly/2E2qFoU)
• Newly accessible

• Tensorflow
• SciKit-Learn
• etc. 

11

http://bit.ly/2E2qFoU


Machine learning vs artificial intelligence
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What does ML have to do with "cloud native"?

• Dynamic environments
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• High-velocity management
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What does ML have to do with "cloud native"?

• Dynamic environments

• High-velocity management

• Continuous automation

• Observability
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What does ML have to do with "cloud native"?

• Dynamic environments

• High-velocity management

• Continuous automation

• Observability

• Efficiency
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What can ML do for the datacenter?

Continuous Delivery infrastructure
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What can ML do for the datacenter?

Continuous Delivery infrastructure

Intelligent Delivery infrastructure
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Intelligent Delivery infrastructure

• Defined architecture
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Intelligent Delivery infrastructure

• Defined architecture

• Flexible but controllable infrastructure
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Intelligent Delivery infrastructure

• Defined architecture

• Flexible but controllable infrastructure

• Intelligent oversight
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Intelligent Delivery infrastructure

• Defined architecture

• Flexible but controllable infrastructure

• Intelligent oversight

• Secure footing
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Types of Machine Learning
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Supervised learning

Training a computer to understand 
data it hasn't seen by teaching it about data 

that has already been labeled
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Supervised learning: Examples

• Image recognition
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Supervised learning: Examples

• Image recognition
• Speech recognition
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Supervised learning: Examples

• Image recognition
• Speech recognition
• Medical outcome prediction
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Supervised learning: Examples

• Image recognition
• Speech recognition
• Medical outcome prediction
• Spam filtering
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Supervised learning: Examples

• Image recognition
• Speech recognition
• Medical outcome prediction
• Spam filtering
• Stock market/crypto pricing
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Unsupervised learning

Letting the computer discover patterns and 
relationships in unlabeled data.
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Unsupervised learning: example

• Clustering 
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Unsupervised learning: example

• Clustering 
• Customers into categories

33



Unsupervised learning: example

• Clustering 
• Customers into categories
• Chemical compounds
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Unsupervised learning: example

• Clustering 
• Customers into categories
• Chemical compounds

• Anomaly detection
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Unsupervised learning: example

• Clustering 
• Customers into categories
• Chemical compounds

• Anomaly detection
• Signal separation
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Reinforcement learning

A combination of supervised and unsupervised 
learning, where the computer is given an objective 
and attempts to reach that objective, discovering 

tactics as it goes along.
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Reinforcement learning: example

• Just about anything humans do
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Reinforcement learning: example

• Just about anything humans do
• Self-driving cars
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Reinforcement learning: example

• Just about anything humans do
• Self-driving cars
• Strategy development
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Reinforcement learning: example

• Just about anything humans do
• Self-driving cars
• Strategy development

• Games
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Reinforcement learning: example

• Just about anything humans do
• Self-driving cars
• Strategy development

• Games
• Scheduling
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Problems Facing the 
Datacenter
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Configuration: potential issues

• Self-service 
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Configuration: potential issues

• Self-service 
• Microservices architectures
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Configuration: potential issues

• Self-service
• Microservices architectures
• Dynamic environments and drift issues
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Configuration: how ML/AI can help

• App configuration based on past history
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Configuration: how ML/AI can help

• App configuration based on past history
• Reinforcement learning to retroactively improve 

configuration
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Performance optimization: Potential issues

• Lots of factors in play
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Performance optimization: Potential issues

• Lots of factors
• Dynamic environments create a changing 

landscape
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Performance optimization: how ML/AI can help

• Analyze multiple factors
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Performance optimization: how ML/AI can help

• Analyze multiple factors
• Predict future load and move or scale workloads 

based on patterns
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Performance optimization: how ML/AI can help

• Analyze multiple factors
• Predict future load and move or scale workloads 

based on patterns
• Move workloads to closer geographical resources 

based on patterns
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Cost optimization: potential issues

• Complex environments
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Cost optimization: potential issues

• Complex environments
• Changing costs
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Cost optimization: potential issues

• Complex environments
• Changing costs
• Soaring storage requirements
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Cost optimization: how AI/ML can help

• Keep track of multiple environments and costs
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Cost optimization: how AI/ML can help

• Keep track of multiple environments and costs
• Adapt to changing conditions
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Cost optimization: how AI/ML can help

• Keep track of multiple environments and costs
• Adapt to changing conditions
• Optimize what data is kept
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Fault detection: potential issues

• Hardware failure
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Fault detection: potential issues

• Hardware failure
• Software configuration drift
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Fault detection: potential issues

• Hardware failure
• Software configuration drift
• Data corruption
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Fault detection: potential issues

• Hardware failure
• Software configuration drift
• Data corruption

No, I am not making that up:  http://bit.ly/cosmic-corruption
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Fault detection: potential issues

• Hardware failure
• Software configuration drift
• Data corruption
• Resource overrun
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Fault detection: how AI/ML can help

• Autoscaling
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Fault detection: how AI/ML can help

• Autoscaling
• Pattern recognition

66



Fault detection: how AI/ML can help

• Autoscaling
• Pattern recognition
• Anomaly detection
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Security: potential issues

• DDOS
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Security: potential issues

• Distributed Denial Of Service attacks
• Advanced Persistent Threats
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Security: potential issues

• DDOS
• APT
• Inside jobs
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Security: how ML/AI can help

• Anomaly detection to find APTs and inside jobs
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Security: how ML/AI can help

• Anomaly detection to find APTs and inside jobs
• Pattern recognition to predict DDOS attacks 

before they're in full swing
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Try It Yourself
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Once upon a time...
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Once upon a time...

• Self-configuring
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Once upon a time...

• Self-configuring
• Self-optimizing
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Once upon a time...

• Self-configuring
• Self-optimizing
• Self-healing
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Once upon a time...

• Self-configuring
• Self-optimizing
• Self-healing
• Self-protecting
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Once upon a time... 
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What are we trying to do?
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What are we trying to do?
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Defining the error

•
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Defining the error

•
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Defining the error

•

84

y



Defining the error

•
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y

ypredicted



Defining the error

•

86

y

ypredicted

abs(y - ypredicted)



Defining the error

•

87

errortotal = sum(abs(y - ypredicted))



Defining the error

•

88

errortotal = sum(abs(y - (mx + b))



Hot and cold
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Hot and cold
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Hot and cold

91



Hot and cold
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Hot and cold
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Hot and cold

94



Hot and cold
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errortotal = sum(abs(y - (mx + b))



Gradient descent

An iterative algorithm to find the minimum of the 
cost/error function and that parameters that 

achieve that minimum.
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Putting it together

• Data
• Python3
• Tensorflow
• Matplotlib (optional)
• Ubuntu 16.04
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What we'll do

• Read the data
• Create the model
• Define the error
• Define the optimizer
• Repeatedly run the optimizer until we get as close 

as we can
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DEMO
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The actual answer

y = .37x + 12
m = .37
b = 12
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DEMO
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Where do we go from here?
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More practically

• Don't expect to go from B&W to VR in one step
• Smaller steps in between
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More practically
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• Start with analytics
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More practically

• Don't expect to go from B&W to VR in one step
• Smaller steps in between

• Start with analytics
• Ultimately, know what you're trying to achieve
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Q&A
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Thank You
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