
Self-service of Cloud Resources for
Kubernetes Applications

About Me

Lewis Marshall
SRE, Tech Evangelist, Appvia

28 years of development and

operations...

● x86 Assembly

● Golang, Kubernetes and Cloud

Appvia.io

Self-service of Cloud Resources
for Kubernetes Applications

Lewis Marshall, Tech Evangelist, SRE, Kore Developer

9th June, 2020

Appvia.io

Agenda
Self-service of Cloud Resources for Kubernetes Applications

Page 4

01 Intro - Why it isn’t easy!

02 Problem and Developer Experience

03 Developer Self-Service

04 Self service in Practice

05 Demo Custom Resources

06 Industry Summary

07 Appvia Approach

08 Summary

09 Questions

Intro - Why it isn’t easy!

Appvia.io

● Lots of products in the industry around cloud infrastructure

● Not many are developer focused

● Developer focused solutions seem to be being replaced with:

○ Operations heavy solutions

○ Domain / Cloud specific solutions

● We had to implement a custom solution around the industry to get a

good outcome

What we learnt from doing self-service

Page 6

The industry is moving

Problem and Developer
Experience

Appvia.io

● Local container focused development

● Fast to iterate and test when local

● Dependencies are libraries and containers and not

directly cloud

● Velocity drops as cloud services get introduced

● Cloud consumption is brokered and gated and

requires specialist domain knowledge

How it is for a Developer

Page 8

Developer Mindset

Appvia.io

● Application in a Kubernetes Cluster

● Cloud provider managed services:

○ Operational overhead removed from team

○ Reliability

○ Simplicity?

What the developer need is

Page 9

Applications consume cloud services via libraries

Application DatabaseCode Library

Appvia.io

What’s the Problem?

Page 10

Provisioning Applications and Dependant Services

Developer Operations

Application Database

Appvia.io

What’s the Problem?

Page 11

Developers

● Create Containerized Applications

● Deliver to Kubernetes

Operations

● Automation Tools

● Deliver Cloud Resources

Delivery Tools

Developer Self-Service

Appvia.io

● Reduce lead times

○ No separate team

○ No manual intervention

○ Nothing to approve

● Reliability of updates

○ Application

○ Cloud

● Enables an Agile process

○ Reduces cost

Why Self Service?
Cloud Services

Page 13

Appvia.io

● Best Practice

○ Simplify Choice e.g. Backups, Cost,
Encryption...

● Cost

○ Trust Staff

○ Reduction with Agility and Reliability

● Security

○ Enables Best Practice

○ Products over Human Error

Self Service
Limiting Risk with Informed Choice

Page 14

Appvia.io

Developer Self Service
Ideal Flow per Application Instance

Page 15

Application

? Any Cloud Provider

Service
Description

Name & Plan

2. Access
Configuration
E.g. endpoint &
credentials

1. Request

Self Service In Practice

Appvia.io

Industry Assumptions

● Native Kubernetes

○ Documentation

○ Resource handling

○ Application domain

● Extended Kubernetes

○ Not simple

○ Domain specific

■ Cloud / Ops knowledge

■ What’s the Dev benefit?

Kubernetes Resources

Page 17

Reconcile Intended State

Appvia.io

Custom Resources for Cloud Services

Page 18

apiVersion: redis.cnrm.cloud.google.com/v1beta1
kind: RedisInstance
metadata:
 labels:
 label-one: "value-one"
 name: cache-appfe
spec:
 displayName: Sample Redis Instance
 region: us-central1
 tier: BASIC
 memorySizeGb: 16

kubectl get RedisInstance

find configured databases

kubectl edit RedisInstance/cache-appfe

manually change some settings

A Kubernetes resource like any other:

A Cloud Resource

Use familiar tools and deployment systems

apiVersion: service-operator.aws/v1alpha1
kind: ElastiCache
metadata:
 name: cache-appfe
spec:
 cacheSubnetGroupName: "loadtest-cluster-k8s"
 vpcSecurityGroupIds: "sg-0581b94aa3c0db58c"
 autoMinorVersionUpgrade: true
 engine: redis
 engineVersion: 5.0.0
 cacheNodeType: "cache.m4.large"

Appvia.io

Scaling custom resources

Page 19

Unique specs for each service

● Different specs for each cloud

● Domain knowledge expected on each service

● No consistency between cloud providers for the Developer

● No guidance on security and best practice

● No high level abstraction

Appvia.io

Provides:

● Reuse Service Brokers from CloudFoundry

● Provides Custom Resources

Service Catalog
Open Service Broker API on Kubernetes

kubernetes-sigs/service-catalog

svc-cat.io

Production Ready Amber

Page 20

https://github.com/kubernetes-sigs/service-catalog
https://svc-cat.io/docs/cli/

Appvia.io

Simplify delivery of Cloud Services

● Provide default parameters for
services

○ Best Practice

● What is published in a system

○ Vetted Services

Service Broker Plans

Page 21

Appvia.io

Request Flow

Application

Service Catalogue

Service Broker(s)

1. Request
Service

2. Request

Cloud Provider

Developer

6. Access
Configuration

Publish Plans

Page 22

5. Status

3. 4.

Open Service Broker API

Appvia.io

Request Flow Concrete Example

Application

Service Catalogue

RDS Production
and
Development
Plans

AWS
Service Broker

1. Request
Production
RDS

2. Service Instance
Requested

Cloud Provider

Developer

6. Place RDS Secret
in namespace
(Create service
binding)

Page 23

5. Status

3.

Open Service Broker API

4.
Service instance
created

Demo of Custom Resources

Appvia.io

Demo of Cloud Resources
Service Catalog

Page 25

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceInstance
metadata:
 name: my-latest-bucket
spec:
 clusterServiceClassExternalName: s3
 clusterServicePlanExternalName: production
 parameters:

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceBinding
metadata:
 name: my-latest-bucket
spec:
 instanceRef:
 name: my-latest-bucket
 secretName: my-latest-bucket

Application

Service Catalogue

1. Request
Service (Plan
and Binding)Developer

2. Configuration

● Use of Plans

● Consume Application Configuration

https://docs.google.com/file/d/1gCw99qKLZwiGIX_JWGBSa8kUOhdcZCOF/preview

Industry Summary

Product Comparison
Product Application

Services
Time Investment Production Ready Developer Self Service

AWS Service Broker 22 High - Cloudformation ⬤ - Future ⬤ Plans

AWS Service Operator 0 NA ⬤ - MVP ⬤ Too early

Azure Open Service Broker 3 ⬤ - No Recent Updates ⬤ Plans

GCP Service Broker 3 High ⬤ - Not supported direction ⬤ Plans

GCP Config Connector 7 High ⬤ - PSP Required ⬤
- Docs
- Infrastructure Focus,
- Implied Config

Crossplane ~4 / Cloud High ⬤ ⬤ OK
- Open App Model
- Traits
- More Infrastructure

Terraform K8 All High ⬤ - Alpha ⬤ Infrastructure Focus

Terraform Controller All High ⬤ - Experimental ⬤ Infrastructure Focus

Self Service For Developers?

Self Service For Developers

Appvia.io

Cloud Vendors Direction

Page 31

● Commercial

● Support many customers

○ Reliability at scale

○ Self support

● NOT multi-cloud

● Save customers time and money?

Motives

Appvia Approach

Appvia.io

Kore
Service Plans

Kore Architecture for Cloud Resource

Page 33

Kore

Application

Service Broker(s)

1. Request
service from
plan

Cloud
Provider(s)

Developer

2. Service
credentials secret
created in
namespace

Service Operator(s)

Appvia.io

● Self Service

○ Plans

○ Simplicity

● Running Application

○ Consuming Cloud Resources

Demo Appvia Ideas
Demo Cloud Resources

Page 34

https://docs.google.com/file/d/1PFgX4d3CeL7OQm72IzpzGrzkyimeGEGV/preview

Summary

Appvia.io

Summary

Page 37

● Current Solutions for Operations

○ Enable Complexity
○ Not Agility

● Plans Provide

○ Simplicity for Developers
■ Agile

○ Best Practice
■ Oversight
■ Audit
■ Compliance

Appvia.io

About Appvia

Page 38

Kubernetes for Teams

700+
Developers

500+
applications

5+ years
Kubernetes
experience

70% cost
reduction

Cloud Resources with
Kubernetes - Questions?

Contact Us

info@appvia.io

appvia.io

appvia/kore

Lewis Marshall
SRE, Tech
Evangelist,
Appvia

https://www.appvia.io/
https://github.com/appvia/kore

