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Networking in CNCF Reference Architecture
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• Resource Management
• Image Management
• Container Management
• Compute Resources

• Cloud Native – Network 
• Network Segmentation and Policy
• SDN & APIs (eg CNI, libnetwork)

• Cloud Native- Storage

• Volume Drivers/Plugins

• Local Storage Management

• Remote Storage Access

Application Definition/ Development

Orchestration & Management

Runtime

Provisioning

Infrastructure (Bare Metal/Cloud)



First Iteration of Container Networking: 
Port Mapping
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www1

www2

eth0: 
port: 80

eth0: 
port: 80

bridge

eth0: 
59.243.125.13
port: 32768

port: 32769

Kinda works… But…
● Port clashes (as above)
● Service discovery (custom code required)

client



Enter Cloud Native Networks...
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Give each 
container 
its own IP 
address 



Give each container its own IP address
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client

www1

www2

eth0: 
172.17.0.1
port: 80

eth0: 
172.17.0.2
port: 80



Give each container its own IP address
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Give each 
container 
its own IP 
address 

✓ Port clash disappears

✓ Workload discovery: as easy 
as a DNS lookup

✓ Kubernetes took this 
approach from outset

✓ We know this works at large 
scale



Linux kernel: the ultimate networking toolkit
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20M
lines of code

~35%
of which is networking



What’s in a Cloud Native Network solution?
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Control Plane Data Plane

● assigns IPs (from 
a pool given to it)

● distributes routing 
information (i.e. 
how to get to this 
workload)

● distributes policy 
(e.g. who can 
connect to whom)

for each packet to/ 
from the workload:

● enforces policy

● forwards it to the 
right destination



Control plane implementation options
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● Distributed key/value store
○ e.g. etcd (used by flannel, Calico)

● Routing protocols
○ e.g. BGP (used by Calico)

● Gossip protocol
○ e.g. Weave Mesh (used by Weave Net)

● Centralized controller
○ e.g. traditional SDNs

Control Plane



Overlay 
� packet encapsulation

● Forwarding engine:
○ Kernel forwarding or user space

● Transport mechanism
○ overlay or natively using the underlying network

Data plane implementation options
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Data Plane

Packet 
header Packet data

Inner packet 
header Packet dataEncap 

info
Outer packet 

header



Plug-in Models
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Container Network 
Interface (CNI)

Container Network 
Model

(CNM / libnetwork)



Selecting the right network plug-in
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Features:
● Do I need specific network features 

such as multicast or encryption?
Flexibility:

● Does it have to work in my own 
datacenter; on my laptop; in the cloud; 
across combinations of these?

● In the cloud do I need my container 
network to cross zones or regions?  

● Are there limits on how many hosts I 
can connect?

Ease of configuration
● What do I have to install before the 

container network?
● What do I have to configure before it 

will work?
Resilience

● What are the solution’s failure modes / 
reliability profile?

● What events is it resilient to? (loss of 
one node, link, data center, ...)

Monitoring and Troubleshooting
● What tools do I need to monitor the 

network?
● What expertise do I need to troubleshoot?

Security - does the container network 
give me protection against:

● Snooping
● Unwanted communication between 

services
Scale and Performance:

● What is the necessary ‘convergence’ 
time?

● What are the performance requirements 
of my application?

● What are the solution’s scaling 
characteristics? Does it “scale out” as my 
cluster grows, or depend on a centralized 
controller that must “scale up”?



Securing the Network with Policy
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Using policy to separate application tiers
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Server Server Server Server

Physical Network



Using policy to separate application tiers
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kind: NetworkPolicy
metadata:
  name: middle-tier-policy
spec:
  podSelector:
    tier: middle
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: frontend

Middle Tier Policy

kind: NetworkPolicy
metadata:
  name: frontend-policy
spec:
  podSelector:
    tier: frontend
  ingress:
  - ports:
    - protocol: tcp
      port: 80

Frontend Tier Policy

kind: NetworkPolicy
metadata:
  name: database-policy
spec:
  podSelector:
    tier: database
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: middle
    ports:
    - protocol: tcp
      port: 6379

Database Tier Policy



Enforced container topology
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Front end RedisMiddle tierMiddle tierFront endFront end Middle tier RedisRedis
:80 :6379



Summary

Networking is a key element of Cloud Native 
computing

IP-per-container is now established best practice, 
simplest for developers & operations

Multiple ways to implement – decide what is right 
for your application deployment environment
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IP



Thank You
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