
Cloud Native 
Networking

January 12, 2017

Webinar Series



Your Presenters

2

Christopher Liljenstolpe
CTO, Tigera  / Founder, 
Project Calico

Bryan Boreham
Director of Engineering, 
WeaveWorks



Networking in CNCF Reference Architecture

3

• Resource Management
• Image Management
• Container Management
• Compute Resources

• Cloud Native – Network 
• Network Segmentation and Policy
• SDN & APIs (eg CNI, libnetwork)

• Cloud Native- Storage

• Volume Drivers/Plugins

• Local Storage Management

• Remote Storage Access

Application Definition/ Development

Orchestration & Management

Runtime

Provisioning

Infrastructure (Bare Metal/Cloud)



First Iteration of Container Networking: 
Port Mapping

4

www1

www2

eth0: 
port: 80

eth0: 
port: 80

bridge

eth0: 
59.243.125.13
port: 32768

port: 32769

Kinda works… But…
● Port clashes (as above)
● Service discovery (custom code required)

client



Enter Cloud Native Networks...

5

Give each 
container 
its own IP 
address 



Give each container its own IP address

6

client

www1

www2

eth0: 
172.17.0.1
port: 80

eth0: 
172.17.0.2
port: 80



Give each container its own IP address

7

Give each 
container 
its own IP 
address 

✓ Port clash disappears

✓ Workload discovery: as easy 
as a DNS lookup

✓ Kubernetes took this 
approach from outset

✓ We know this works at large 
scale



Linux kernel: the ultimate networking toolkit

8

20M
lines of code

~35%
of which is networking



What’s in a Cloud Native Network solution?

9

Control Plane Data Plane

● assigns IPs (from 
a pool given to it)

● distributes routing 
information (i.e. 
how to get to this 
workload)

● distributes policy 
(e.g. who can 
connect to whom)

for each packet to/ 
from the workload:

● enforces policy

● forwards it to the 
right destination



Control plane implementation options

10

● Distributed key/value store
○ e.g. etcd (used by flannel, Calico)

● Routing protocols
○ e.g. BGP (used by Calico)

● Gossip protocol
○ e.g. Weave Mesh (used by Weave Net)

● Centralized controller
○ e.g. traditional SDNs

Control Plane



Overlay 
� packet encapsulation

● Forwarding engine:
○ Kernel forwarding or user space

● Transport mechanism
○ overlay or natively using the underlying network

Data plane implementation options

11

Data Plane

Packet 
header Packet data

Inner packet 
header Packet dataEncap 

info
Outer packet 

header



Plug-in Models

12

Container Network 
Interface (CNI)

Container Network 
Model

(CNM / libnetwork)



Selecting the right network plug-in

13

Features:
● Do I need specific network features 

such as multicast or encryption?
Flexibility:

● Does it have to work in my own 
datacenter; on my laptop; in the cloud; 
across combinations of these?

● In the cloud do I need my container 
network to cross zones or regions?  

● Are there limits on how many hosts I 
can connect?

Ease of configuration
● What do I have to install before the 

container network?
● What do I have to configure before it 

will work?
Resilience

● What are the solution’s failure modes / 
reliability profile?

● What events is it resilient to? (loss of 
one node, link, data center, ...)

Monitoring and Troubleshooting
● What tools do I need to monitor the 

network?
● What expertise do I need to troubleshoot?

Security - does the container network 
give me protection against:

● Snooping
● Unwanted communication between 

services
Scale and Performance:

● What is the necessary ‘convergence’ 
time?

● What are the performance requirements 
of my application?

● What are the solution’s scaling 
characteristics? Does it “scale out” as my 
cluster grows, or depend on a centralized 
controller that must “scale up”?



Securing the Network with Policy

14



15



16



17



Using policy to separate application tiers

18

Server Server Server Server

Physical Network



Using policy to separate application tiers

19

kind: NetworkPolicy
metadata:
  name: middle-tier-policy
spec:
  podSelector:
    tier: middle
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: frontend

Middle Tier Policy

kind: NetworkPolicy
metadata:
  name: frontend-policy
spec:
  podSelector:
    tier: frontend
  ingress:
  - ports:
    - protocol: tcp
      port: 80

Frontend Tier Policy

kind: NetworkPolicy
metadata:
  name: database-policy
spec:
  podSelector:
    tier: database
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: middle
    ports:
    - protocol: tcp
      port: 6379

Database Tier Policy



Enforced container topology

20

Front end RedisMiddle tierMiddle tierFront endFront end Middle tier RedisRedis
:80 :6379



Summary

Networking is a key element of Cloud Native 
computing

IP-per-container is now established best practice, 
simplest for developers & operations

Multiple ways to implement – decide what is right 
for your application deployment environment

21

IP



Thank You

22


